Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries

被引:8
作者
Liang, Bin [1 ]
Cheng, Fangyuan [2 ]
Ge, Xiaoyu [2 ]
Tan, Xuejun [1 ]
Fang, Chun [2 ]
Han, Jiantao [2 ]
机构
[1] Myj Chem Co Ltd, Puyang 457000, Henan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; electrolyte; gamma-butyrolactone; low temperature; Ni-rich NCM; LITHIUM; PERFORMANCE;
D O I
10.1021/acsaem.2c00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ni-rich LiNixMnyCozO2 (x + y + z = 1, x > 0.5, Ni rich NMC) materials are one of the most potential cathodes for high energy density lithium-ion batteries (LIBs) due to their high specific capacity and relatively low cost. However, performances of LIBs with the Ni-rich NCM cathode below 0 degrees C are restricted by low ion conductivity of the electrolyte and a slow ion diffusion rate at the electrode-electrolyte interphase. Here, gamma-butyrolactone (GBL) with a low melting point and high ion conductivity is used to partially replace ethylene carbonate, which is conducive to lower the freezing point and increase the low-temperature ionic conductivity of the electrolyte, and the addition of GBL improves the dissolution of lithium difluoro-(oxalato)borate (LiDFOB) in a traditional carbonate solvent. Instead of lithium hexafluorophosphate (LiPF6), LiDFOB can form a F-, B-, and 0-rich interfacial phase at the Ni-rich NCM cathode, suppressing the fatal interface reaction and reducing the interface impedance. As a result, the electrolyte using GBL as the cosolvent and LiDFOB as the lithium salt can significantly improve the specific discharge capacity and cycling stability of LiNi0.8Co0.1Mn0.1O2/Li cells at 0 degrees C and -30 degrees C. At 0 degrees C, the LiNi0.8Co0.1Mn0.1O2/Li cells have a discharge specific capacity of 160 mA h g(-1) and a capacity retention rate of 99% over 100 cycles. They deliver a decent capacity at -30 degrees C. This rational design of an electrolyte via optimizing the combination of a solvent and a lithium salt has been confirmed to be a low cost but rather an effective method to improve the low-temperature performances of LIBs.
引用
收藏
页码:5867 / 5874
页数:8
相关论文
共 50 条
[21]   Revealing the surface modification effect on Li-ion insertion into Ni-rich NCM cathode material by cyclic voltammetry [J].
Ivanishchev, Aleksandr V. ;
Ivanishcheva, Irina A. ;
Lee, Suhyun ;
Kim, Jae-Joong ;
Kim, Young-Je ;
Bae, Changgeun ;
Nam, Sang-Cheol ;
Song, Jung-Hoon .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 950
[22]   Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-Ion Batteries [J].
Phelan, Conor M. E. ;
Bjorklund, Erik ;
Singh, Jasper ;
Fraser, Michael ;
Didwal, Pravin N. ;
Rees, Gregory J. ;
Ruff, Zachary ;
Ferrer, Pilar ;
Grinter, David C. ;
Grey, Clare P. ;
Weatherup, Robert S. .
CHEMISTRY OF MATERIALS, 2024, 36 (07) :3334-3344
[23]   Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries [J].
Dose, Wesley M. ;
Xu, Chao ;
Grey, Clare P. ;
De Volder, Michael F. L. .
CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (11)
[24]   Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges [J].
Wang, Xinxin ;
Ding, Yuan-Li ;
Deng, Ya-Ping ;
Chen, Zhongwei .
ADVANCED ENERGY MATERIALS, 2020, 10 (12)
[25]   Surface Reduction Stabilizes the Single-Crystalline Ni-Rich Layered Cathode for Li-Ion Batteries [J].
Fan, Qinglu ;
Zuba, Mateusz Jan ;
Zong, Yanxu ;
Menon, Ashok S. ;
Pacileo, Anthony T. ;
Piper, Louis F. J. ;
Zhou, Guangwen ;
Liu, Hao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) :38795-38806
[26]   Enhanced interfacial stability of Ni-rich cathode for Li-ion batteries towards excellent high-voltage performance [J].
Zhang, Dianwei ;
Li, Yunjiao ;
Xi, Xiaoming ;
Wang, Shan ;
Hao, Shuaipeng ;
Lei, Tongxin ;
Ren, Xugang ;
Xiong, Yike ;
Liu, Shuaiwei ;
Zheng, Junchao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
[27]   Improving Cycle Life of Ni-Rich Li-Ion Battery Cathodes by Using Compartmentalized Anode and Cathode Electrolytes [J].
Sun, Jianqi ;
Wen, Bo ;
Li, Yaogang ;
Wang, Hongzhi ;
De Volder, Michael .
SMALL, 2025, 21 (11)
[28]   Multishelled Ni-Rich Li(NixCoyMnz)O2 Hollow Fibers with Low Cation Mixing as High-Performance Cathode Materials for Li-Ion Batteries [J].
Zou, Yihui ;
Yang, Xianfeng ;
Lv, Chunxiao ;
Liu, Tongchao ;
Xia, Yanzhi ;
Shang, Lu ;
Waterhouse, Geoffrey I. N. ;
Yang, Dongjiang ;
Zhang, Tierui .
ADVANCED SCIENCE, 2017, 4 (01)
[29]   Reinterpreting the correlation between cycling stability of Ni-rich layered oxide cathode and the charging cut-off voltage in Li-ion batteries [J].
Cheng, Fangyuan ;
Zhang, Wen ;
Qin, Daomin ;
Sun, Shixiong ;
Xu, Yue ;
Li, Qing ;
Fang, Chun ;
Han, Jiantao ;
Huang, Yunhui .
NANO ENERGY, 2023, 115
[30]   Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions [J].
Kim, Sung-Beom ;
Kim, Hyeona ;
Park, Deok-Hye ;
Kim, Ji-Hwan ;
Shin, Jae-Hoon ;
Jang, Jae-Sung ;
Moon, Sang-Hyun ;
Choi, Jin-Hyuk ;
Park, Kyung-Won .
JOURNAL OF POWER SOURCES, 2021, 506