Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries

被引:8
作者
Liang, Bin [1 ]
Cheng, Fangyuan [2 ]
Ge, Xiaoyu [2 ]
Tan, Xuejun [1 ]
Fang, Chun [2 ]
Han, Jiantao [2 ]
机构
[1] Myj Chem Co Ltd, Puyang 457000, Henan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; electrolyte; gamma-butyrolactone; low temperature; Ni-rich NCM; LITHIUM; PERFORMANCE;
D O I
10.1021/acsaem.2c00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ni-rich LiNixMnyCozO2 (x + y + z = 1, x > 0.5, Ni rich NMC) materials are one of the most potential cathodes for high energy density lithium-ion batteries (LIBs) due to their high specific capacity and relatively low cost. However, performances of LIBs with the Ni-rich NCM cathode below 0 degrees C are restricted by low ion conductivity of the electrolyte and a slow ion diffusion rate at the electrode-electrolyte interphase. Here, gamma-butyrolactone (GBL) with a low melting point and high ion conductivity is used to partially replace ethylene carbonate, which is conducive to lower the freezing point and increase the low-temperature ionic conductivity of the electrolyte, and the addition of GBL improves the dissolution of lithium difluoro-(oxalato)borate (LiDFOB) in a traditional carbonate solvent. Instead of lithium hexafluorophosphate (LiPF6), LiDFOB can form a F-, B-, and 0-rich interfacial phase at the Ni-rich NCM cathode, suppressing the fatal interface reaction and reducing the interface impedance. As a result, the electrolyte using GBL as the cosolvent and LiDFOB as the lithium salt can significantly improve the specific discharge capacity and cycling stability of LiNi0.8Co0.1Mn0.1O2/Li cells at 0 degrees C and -30 degrees C. At 0 degrees C, the LiNi0.8Co0.1Mn0.1O2/Li cells have a discharge specific capacity of 160 mA h g(-1) and a capacity retention rate of 99% over 100 cycles. They deliver a decent capacity at -30 degrees C. This rational design of an electrolyte via optimizing the combination of a solvent and a lithium salt has been confirmed to be a low cost but rather an effective method to improve the low-temperature performances of LIBs.
引用
收藏
页码:5867 / 5874
页数:8
相关论文
共 30 条
[11]   Carbonate Free Electrolyte for Lithium Ion Batteries Containing γ-Butyrolactone and Methyl Butyrate [J].
Lazar, Michael L. ;
Lucht, Brett L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A928-A934
[12]   Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase [J].
Li, Jianyu ;
Li, Wangda ;
You, Ya ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2018, 8 (29)
[13]   30 Years of Lithium-Ion Batteries [J].
Li, Matthew ;
Lu, Jun ;
Chen, Zhongwei ;
Amine, Khalil .
ADVANCED MATERIALS, 2018, 30 (33)
[14]   Unraveling the Origin of Instability in Ni-Rich LiNi1-2xCoxMnxO2 (NCM) Cathode Materials [J].
Liang, Chaoping ;
Kong, Fantai ;
Longo, Roberto C. ;
Kc, Santosh ;
Kim, Jeom-Soo ;
Jeon, SangHoon ;
Choi, SuAn ;
Cho, Kyeongjae .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12) :6383-6393
[15]   A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries [J].
Lin, Qingyun ;
Guan, Wenhao ;
Meng, Jie ;
Huang, Wei ;
Wei, Xiao ;
Zeng, Yuewu ;
Li, Jixue ;
Zhang, Ze .
NANO ENERGY, 2018, 54 :313-321
[16]   Pathways for practical high-energy long-cycling lithium metal batteries [J].
Liu, Jun ;
Bao, Zhenan ;
Cui, Yi ;
Dufek, Eric J. ;
Goodenough, John B. ;
Khalifah, Peter ;
Li, Qiuyan ;
Liaw, Bor Yann ;
Liu, Ping ;
Manthiram, Arumugam ;
Meng, Y. Shirley ;
Subramanian, Venkat R. ;
Toney, Michael F. ;
Viswanathan, Vilayanur V. ;
Whittingham, M. Stanley ;
Xiao, Jie ;
Xu, Wu ;
Yang, Jihui ;
Yang, Xiao-Qing ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (03) :180-186
[17]   Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium-Metal Batteries [J].
Shangguan, Xuehui ;
Xu, Gaojie ;
Cui, Zili ;
Wang, Qinglei ;
Du, Xiaofan ;
Chen, Kai ;
Huang, Suqi ;
Jia, Guofeng ;
Li, Faqiang ;
Wang, Xiao ;
Lu, Di ;
Dong, Shanmu ;
Cui, Guanglei .
SMALL, 2019, 15 (16)
[18]   Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase [J].
Shi, Siqi ;
Lu, Peng ;
Liu, Zhongyi ;
Qi, Yue ;
Hector, Louis G., Jr. ;
Li, Hong ;
Harris, Stephen J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (37) :15476-15487
[19]   Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase [J].
Thenuwara, Akila C. ;
Shetty, Pralav P. ;
Kondekar, Neha ;
Sandoval, Stephanie E. ;
Cavallaro, Kelsey ;
May, Richard ;
Yang, Chi-Ta ;
Marbella, Lauren E. ;
Qi, Yue ;
McDowell, Matthew T. .
ACS ENERGY LETTERS, 2020, 5 (07) :2411-2420
[20]   Aqueous Lithium-Ion Battery of Nano-LiFePO4 with Antifreezing Agent of Ethyleneglycol for Low-Temperature Operation [J].
Tron, Artur ;
Jeong, Seonghun ;
Park, Yeong Don ;
Mun, Junyoung .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17) :14531-14538