Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries

被引:8
作者
Liang, Bin [1 ]
Cheng, Fangyuan [2 ]
Ge, Xiaoyu [2 ]
Tan, Xuejun [1 ]
Fang, Chun [2 ]
Han, Jiantao [2 ]
机构
[1] Myj Chem Co Ltd, Puyang 457000, Henan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; electrolyte; gamma-butyrolactone; low temperature; Ni-rich NCM; LITHIUM; PERFORMANCE;
D O I
10.1021/acsaem.2c00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ni-rich LiNixMnyCozO2 (x + y + z = 1, x > 0.5, Ni rich NMC) materials are one of the most potential cathodes for high energy density lithium-ion batteries (LIBs) due to their high specific capacity and relatively low cost. However, performances of LIBs with the Ni-rich NCM cathode below 0 degrees C are restricted by low ion conductivity of the electrolyte and a slow ion diffusion rate at the electrode-electrolyte interphase. Here, gamma-butyrolactone (GBL) with a low melting point and high ion conductivity is used to partially replace ethylene carbonate, which is conducive to lower the freezing point and increase the low-temperature ionic conductivity of the electrolyte, and the addition of GBL improves the dissolution of lithium difluoro-(oxalato)borate (LiDFOB) in a traditional carbonate solvent. Instead of lithium hexafluorophosphate (LiPF6), LiDFOB can form a F-, B-, and 0-rich interfacial phase at the Ni-rich NCM cathode, suppressing the fatal interface reaction and reducing the interface impedance. As a result, the electrolyte using GBL as the cosolvent and LiDFOB as the lithium salt can significantly improve the specific discharge capacity and cycling stability of LiNi0.8Co0.1Mn0.1O2/Li cells at 0 degrees C and -30 degrees C. At 0 degrees C, the LiNi0.8Co0.1Mn0.1O2/Li cells have a discharge specific capacity of 160 mA h g(-1) and a capacity retention rate of 99% over 100 cycles. They deliver a decent capacity at -30 degrees C. This rational design of an electrolyte via optimizing the combination of a solvent and a lithium salt has been confirmed to be a low cost but rather an effective method to improve the low-temperature performances of LIBs.
引用
收藏
页码:5867 / 5874
页数:8
相关论文
共 30 条
[1]   The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material [J].
Chen, Tao ;
Li, Xiang ;
Wang, Hao ;
Yan, Xinxiu ;
Wang, Lei ;
Deng, Bangwei ;
Ge, Wujie ;
Qu, Meizhen .
JOURNAL OF POWER SOURCES, 2018, 374 :1-11
[2]   High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte [J].
Dong, Xiaoli ;
Lin, Yuxiao ;
Li, Panlong ;
Ma, Yuanyuan ;
Huang, Jianhang ;
Bin, Duan ;
Wang, Yonggang ;
Qi, Yue ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) :5623-5627
[3]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[4]   Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior [J].
Friesen, Alex ;
Hildebrand, Stephan ;
Horsthemke, Fabian ;
Boerner, Markus ;
Kloepsch, Richard ;
Niehoff, Philip ;
Schappacher, Falko M. ;
Winter, Martin .
JOURNAL OF POWER SOURCES, 2017, 363 :70-77
[5]   Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Genc, Arda ;
Wang, Zhiguo ;
Wang, Dapeng ;
Amine, Khalil ;
Gao, Fei ;
Zhou, Guangwen ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
NANO LETTERS, 2012, 12 (10) :5186-5191
[6]   Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode [J].
Guo, Rude ;
Che, Yanxia ;
Lan, Guangyuan ;
Lan, Jianlian ;
Li, Jianhui ;
Xing, Lidan ;
Xu, K. ;
Fan, Weizhen ;
Yu, Le ;
Li, Weishan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) :38285-38293
[7]   Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between-40 and 60 °C [J].
Hou, Junbo ;
Yang, Min ;
Wang, Deyu ;
Zhang, Junliang .
ADVANCED ENERGY MATERIALS, 2020, 10 (18)
[8]   Customizing a Li-metal battery that survives practical operating conditions for electric vehicle applications [J].
Hwang, Jang-Yeon ;
Park, Seong-Jin ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) :2174-2184
[9]   Enabling High-Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte [J].
Jie, Yulin ;
Liu, Xiaojing ;
Lei, Zhanwu ;
Wang, Shiyang ;
Chen, Yawei ;
Huang, Fanyang ;
Cao, Ruiguo ;
Zhang, Genqiang ;
Jiao, Shuhong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (09) :3505-3510
[10]   The Effect of Electrolyte Additives upon Lithium Plating during Low Temperature Charging of Graphite-LiNiCoAlO2 Lithium-Ion Three Electrode Cells [J].
Jones, John-Paul ;
Smart, Marshall C. ;
Krause, Frederick C. ;
Bugga, Ratnakumar, V .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)