Numerical calculations of the finite key rate for general quantum key distribution protocols

被引:30
作者
George, Ian [1 ]
Lin, Jie
Luetkenhaus, Norbert
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
SECURITY; CRYPTOGRAPHY; ENTANGLEMENT;
D O I
10.1103/PhysRevResearch.3.013274
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite key analysis of quantum key distribution (QKD) is an important tool for any QKD implementation. While much work has been done on the framework of finite key analysis, the application to individual protocols often relies on the specific protocol being simple or highly symmetric as well as represented in small finite-dimensional Hilbert spaces. In this work, we extend our pre-existing reliable, efficient, tight, and generic numerical method for calculating the asymptotic key rate of device-dependent QKD protocols in finite-dimensional Hilbert spaces to the finite key regime using the security analysis framework of Renner. We explain how this extension preserves the reliability, efficiency, and tightness of the asymptotic method. We then explore examples which illustrate both the generality of our method as well as the importance of parameter estimation and data processing within the framework.
引用
收藏
页数:25
相关论文
共 56 条
[1]   Using quantum key distribution for cryptographic purposes: A survey [J].
Alleaume, R. ;
Branciard, C. ;
Bouda, J. ;
Debuisschert, T. ;
Dianati, M. ;
Gisin, N. ;
Godfrey, M. ;
Grangier, P. ;
Laenger, T. ;
Luetkenhaus, N. ;
Monyk, C. ;
Painchault, P. ;
Peev, M. ;
Poppe, A. ;
Pornin, T. ;
Rarity, J. ;
Renner, R. ;
Ribordy, G. ;
Riguidel, M. ;
Salvail, L. ;
Shields, A. ;
Weinfurter, H. ;
Zeilinger, A. .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :62-81
[2]   Reference frames, superselection rules, and quantum information [J].
Bartlett, Stephen D. ;
Rudolph, Terry ;
Spekkens, Robert W. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :555-609
[3]  
Beaudry N. J., ARXIV150502792V1
[4]   Squashing models for optical measurements in quantum communication [J].
Beaudry, Normand J. ;
Moroder, Tobias ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[5]  
Ben-Or M, 2005, LECT NOTES COMPUT SC, V3378, P386
[6]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[7]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[8]  
Boyd Stephen, 2004, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[9]   Min-entropy and quantum key distribution: Nonzero key rates for "small" numbers of signals [J].
Bratzik, Sylvia ;
Mertz, Markus ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2011, 83 (02)
[10]   Numerical finite-key analysis of quantum key distribution [J].
Bunandar, Darius ;
Govia, Luke C. G. ;
Krovi, Hari ;
Englund, Dirk .
NPJ QUANTUM INFORMATION, 2020, 6 (01)