A sinusoidal differential evolution algorithm for numerical optimisation

被引:175
作者
Draa, Amer [1 ]
Bouzoubia, Samira [1 ]
Boukhalfa, Imene [1 ]
机构
[1] Constantine 2 Univ, MISC Lab, Constantine, Algeria
关键词
Differential evolution; Sinusoidal parameter adjustment; Exploration; Exploitation; Optimisation; GLOBAL OPTIMIZATION; STRATEGY;
D O I
10.1016/j.asoc.2014.11.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new variant of the Differential Evolution (DE) algorithm called Sinusoidal Differential Evolution (SinDE). The key idea of the proposed SinDE is the use of new sinusoidal formulas to automatically adjust the values of the DE main parameters: the scaling factor and the crossover rate. The objective of using the proposed sinusoidal formulas is the search for a good balance between the exploration of non visited regions of the search space and the exploitation of the already found good solutions. By applying it on the recently proposed CEC-2013 set of benchmark functions, the proposed approach is statistically compared with the classical DE, the linearly parameter adjusting DE and 10 other state-of-the-art metaheuristics. The obtained results have proven the superiority of the proposed SinDE, it outperformed other approaches especially for multimodal and composition functions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 126
页数:28
相关论文
共 46 条
[1]  
Abbass HA, 2002, IEEE C EVOL COMPUTAT, P831, DOI 10.1109/CEC.2002.1007033
[2]  
Abbass HA, 2001, IEEE C EVOL COMPUTAT, P971, DOI 10.1109/CEC.2001.934295
[3]   Population set-based global optimization algorithms:: some modifications and numerical studies [J].
Ali, MM ;
Törn, A .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (10) :1703-1725
[4]  
[Anonymous], 2002, ADV INTELL SYST FUZZ
[5]  
[Anonymous], 1999, NEW IDEAS OPTIMIZATI
[6]  
[Anonymous], 1996, P IEEE INT C EV COMP
[7]  
Auger A, 2005, IEEE C EVOL COMPUTAT, P1769
[8]  
Biswas S, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P1115
[9]   Self-adaptive differential evolution algorithm in constrained real-parameter optimization [J].
Brest, Janez ;
Zumer, Viljem ;
Maucec, Mirjam Sepesy .
2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, :215-+
[10]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657