Vortex solitons in a saturable optical medium

被引:38
作者
Tikhonenko, V [1 ]
Kivshar, YS
Steblina, VV
Zozulya, AA
机构
[1] Australian Natl Univ, Laser Phys Ctr, Res Sch Phys Sci & Engn, Australian Photon Cooperat Res Ctr, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Ctr Opt Sci, Res Sch Phys Sci & Engn, Australian Photon Cooperat Res Ctr, Canberra, ACT 0200, Australia
[3] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
关键词
D O I
10.1364/JOSAB.15.000079
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical vortex solitons in a defocusing saturable medium are analyzed in the framework of the (2 + 1)-dimensional generalized nonlinear Schrodinger equation. Stationary, radially symmetric localized solutions with nonvanishing asymptotics and a phase singularity (vortex solitons) are found numerically for the varying saturation parameter. Relaxation of some localized initial profiles (e.g., vortex-type structures of an elliptic shape) to a vortex soliton is investigated numerically and then compared with the experimentally measured propagation of the vortex solitons created by a laser beam passed through a rubidium vapor, known as a nonlinear medium with strong saturation of the nonlinear refractive index. Reasonably good agreement is found, supporting the validity of the phenomenological model of the saturable nonlinear medium. (C) 1998 Optical Society of America.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 26 条
[11]   OPTICAL VORTEX SOLITONS AND THE STABILITY OF DARK SOLITON STRIPES [J].
LAW, CT ;
SWARTZLANDER, GA .
OPTICS LETTERS, 1993, 18 (08) :586-588
[12]   NONLINEAR ROTATION OF 3-DIMENSIONAL DARK SPATIAL SOLITONS IN A GAUSSIAN LASER-BEAM [J].
LUTHERDAVIES, B ;
POWLES, R ;
TIKHONENKO, V .
OPTICS LETTERS, 1994, 19 (22) :1816-1818
[13]   Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices [J].
Mamaev, AV ;
Saffman, M ;
Zozulya, AA .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2262-2265
[14]   Propagation of light beams in anisotropic nonlinear media: From symmetry breaking to spatial turbulence [J].
Mamaev, AV ;
Saffman, M ;
Anderson, DZ ;
Zozulya, AA .
PHYSICAL REVIEW A, 1996, 54 (01) :870-879
[15]   Decay of high order optical vortices in anisotropic nonlinear optical media [J].
Mamaev, AV ;
Saffman, M ;
Zozulya, AA .
PHYSICAL REVIEW LETTERS, 1997, 78 (11) :2108-2111
[16]   Vortex evolution and bound pair formation in anisotropic nonlinear optical media [J].
Mamaev, AV ;
Saffman, M ;
Zozulya, AA .
PHYSICAL REVIEW LETTERS, 1996, 77 (22) :4544-4547
[17]   Break-up of two-dimensional bright spatial solitons due to transverse modulation instability [J].
Mamaev, AV ;
Saffman, M ;
Zozulya, AA .
EUROPHYSICS LETTERS, 1996, 35 (01) :25-30
[18]   DARK SPATIAL SOLITON BREAK-UP IN THE TRANSVERSE PLANE [J].
MCDONALD, GS ;
SYED, KS ;
FIRTH, WJ .
OPTICS COMMUNICATIONS, 1993, 95 (4-6) :281-288
[19]   SELF-FOCUSING OF PLANE DARK SOLITONS IN NONLINEAR DEFOCUSING MEDIA [J].
PELINOVSKY, DE ;
STEPANYANTS, YA ;
KIVSHAR, YS .
PHYSICAL REVIEW E, 1995, 51 (05) :5016-5026
[20]  
PITAEVSKII LP, 1961, ZH EKSP TEOR FIZ, V13, P451