Achieving Controlled Biomolecule-Biomaterial Conjugation

被引:180
作者
Spicer, Christopher D. [1 ]
Pashuck, E. Thomas [2 ]
Stevens, Molly M. [1 ,3 ,4 ]
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, Scheeles Vag 2, Stockholm, Sweden
[2] Rutgers State Univ, NJ Ctr Biomat, 145 Bevier Rd, Piscataway, NJ USA
[3] Imperial Coll London, Dept Bioengn, Dept Mat, Exhibit Rd, London, England
[4] Imperial Coll London, Inst Biomed Engn, Exhibit Rd, London, England
基金
英国工程与自然科学研究理事会; 瑞典研究理事会; 英国惠康基金;
关键词
DIELS-ALDER REACTIONS; POLY(ETHYLENE GLYCOL) HYDROGELS; INVERSE-ELECTRON-DEMAND; MESENCHYMAL STEM-CELLS; FREE CLICK CHEMISTRY; AZIDE-ALKYNE CYCLOADDITION; CHEMICAL PROTEIN MODIFICATION; ENDOTHELIAL GROWTH-FACTOR; TRANSFER-RNA SYNTHETASE; THIOL-ACRYLATE PHOTOPOLYMERIZATIONS;
D O I
10.1021/acs.chemrev.8b00253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
引用
收藏
页码:7702 / 7743
页数:42
相关论文
共 553 条
[1]   Engineering Biomaterials for Enhanced Tissue Regeneration [J].
Abbott R.D. ;
Kaplan D.L. .
Current Stem Cell Reports, 2016, 2 (2) :140-146
[2]   Self-assembling peptide-based building blocks in medical applications [J].
Acar, Handan ;
Srivastava, Samanvaya ;
Chung, Eun Ji ;
Schnorenberg, Mathew R. ;
Barrett, John C. ;
LaBelle, James L. ;
Tirrell, Matthew .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 110 :65-79
[3]   Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction [J].
Adzima, Brian J. ;
Tao, Youhua ;
Kloxin, Christopher J. ;
DeForest, Cole A. ;
Anseth, Kristi S. ;
Bowman, Christopher N. .
NATURE CHEMISTRY, 2011, 3 (03) :256-259
[4]   A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems [J].
Agard, NJ ;
Prescher, JA ;
Bertozzi, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (46) :15046-15047
[5]   Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery [J].
Aimetti, Alex A. ;
Machen, Alexandra J. ;
Anseth, Kristi S. .
BIOMATERIALS, 2009, 30 (30) :6048-6054
[6]   In vivo cellular reactions to different biomaterials-Physiological and pathological aspects and their consequences [J].
Al-Maawi, Sarah ;
Orlowska, Anna ;
Sader, Robert ;
Kirkpatrick, C. James ;
Ghanaati, Shahram .
SEMINARS IN IMMUNOLOGY, 2017, 29 :49-61
[7]   Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine-Norbornene Chemistry [J].
Alge, Daniel L. ;
Azagarsamy, Malar A. ;
Donohue, Dillon F. ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2013, 14 (04) :949-953
[8]   Contribution of linker stability to the activities of anticancer immunoconjugates [J].
Alley, Stephen C. ;
Benjamin, Dennis R. ;
Jeffrey, Scott C. ;
Okeley, Nicole M. ;
Meyer, Damon L. ;
Sanderson, Russell J. ;
Senter, Peter D. .
BIOCONJUGATE CHEMISTRY, 2008, 19 (03) :759-765
[9]   The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels [J].
Anderson, Sarah B. ;
Lin, Chien-Chi ;
Kuntzler, Donna V. ;
Anseth, Kristi S. .
BIOMATERIALS, 2011, 32 (14) :3564-3574
[10]  
Andreopoulos FM, 1999, BIOTECHNOL BIOENG, V65, P579, DOI 10.1002/(SICI)1097-0290(19991205)65:5<579::AID-BIT11>3.0.CO