On the discrepancy of circular sequences of reals

被引:2
作者
Chung, Fan [1 ]
Graham, Ron [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
关键词
Discrepancy; Uniform distribution;
D O I
10.1016/j.jnt.2015.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a refined measure of the discrepancy of sequences of real numbers in [0,1] on a circle C of circumference 1. Specifically, for a sequence x = (x(1), x(2), ...) in [0,1], define the discrepancy D(x) of x by D(x) = inf(n >= 1) inf(m >= 1) n parallel to x(m) - x(m+n)parallel to where parallel to x(i) - x(j)parallel to = min {vertical bar x(i) - x(j)vertical bar, 1 - vertical bar x(i) - x(j)vertical bar} is the distance between x(i) and x(i) on C. We show that sup(x) D(x) <= 3-root 5/2 and that this bound is achieved, strengthening a conjecture of D.J. Newman. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 65
页数:14
相关论文
共 14 条
  • [1] [Anonymous], 1994, FDN COMPUTER SCI
  • [2] BECK J, 1995, HDB COMBINATORICS, V2, P1405
  • [3] Beck J., 1987, CAMBRIDGE TRACTS MAT, V89
  • [4] Cassels J. W. S., 1955, J LOND MATH SOC, V30, P119
  • [5] Chen W., 2014, LECT NOTES MATH, V2017
  • [6] Chung F., 1981, C MATH SOC J ANOS PR, V37, P181
  • [7] de Broijn N., 1949, INDAG MATH, V11, p, P46
  • [8] ERDOS P, 1980, MONOGRAPHIE U GENEVE, V28, P128
  • [9] Kuipers L., 1974, Pure and Applied Mathematics
  • [10] Matougek J., 1999, ALGORITHMS COMBIN, V28