Current Challenges in Cell-Type Discovery Through Single-Cell Data

被引:0
|
作者
Roditi, Laura De Vargas [1 ]
Macnair, Will [2 ]
Claassen, Manfred
机构
[1] ETH, Inst Mol Syst Biol, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[2] SIB, Zurich, Switzerland
关键词
FLOW-CYTOMETRY DATA; ORIGIN;
D O I
10.1051/itmconf/20150500010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Single cell sequencing and proteome profiling efforts in the past few years have revealed widespread genetic and proteomic heterogeneity among tumor cells. However, sensible cell-type definition of such heterogeneous cell populations has so far been a challenging task. Single cell technologies such as RNA sequencing and mass cytometry provide information precluded by conventional bulk measurements and have achieved significant improvements in multiparametricity at high cellular throughput. By combining these technologies with computational and mathematical techniques it is possible to quantitatively define cellular heterogeneity, uncovering distinct phenotypic profiles that can be utilized to, for example, characterize tumor heterogeneity with the potential to develop and improve therapeutic strategies.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Single-Cell Genomics Unravels Brain Cell-Type Complexity
    Guillaumet-Adkins, Amy
    Heyn, Holger
    NEUROEPIGENOMICS IN AGING AND DISEASE, 2017, 978 : 393 - 407
  • [2] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Wang, Chunxiang
    Gao, Xin
    Liu, Juntao
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [3] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Chunxiang Wang
    Xin Gao
    Juntao Liu
    BMC Bioinformatics, 21
  • [4] Putative cell type discovery from single-cell gene expression data
    Miao, Zhichao
    Moreno, Pablo
    Huang, Ni
    Papatheodorou, Irene
    Brazma, Alvis
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (06) : 621 - +
  • [5] Putative cell type discovery from single-cell gene expression data
    Zhichao Miao
    Pablo Moreno
    Ni Huang
    Irene Papatheodorou
    Alvis Brazma
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 621 - 628
  • [6] Review of single-cell RNA-seq data clustering for cell-type identification and characterization
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Jiecong
    Lin, Qiuzhen
    Wong, Ka-Chun
    RNA, 2023, 29 (05) : 517 - 530
  • [7] scAnnotate: an automated cell-type annotation tool for single-cell RNA-sequencing data
    Ji, Xiangling
    Tsao, Danielle
    Bai, Kailun
    Tsao, Min
    Xing, Li
    Zhang, Xuekui
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [8] Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data
    Huang, Yixuan
    Zhang, Peng
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [9] MACA: marker-based automatic cell-type annotation for single-cell expression data
    Xu, Yang
    Baumgart, Simon J.
    Stegmann, Christian M.
    Hayat, Sikander
    BIOINFORMATICS, 2022, 38 (06) : 1756 - 1760
  • [10] Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
    Chen, Xi
    Wang, Yuan
    Cappuccio, Antonio
    Cheng, Wan-Sze
    Zamojski, Frederique Ruf
    Nair, Venugopalan D.
    Miller, Clare M.
    Rubenstein, Aliza B.
    Nudelman, German
    Tadych, Alicja
    Theesfeld, Chandra L.
    Vornholt, Alexandria
    George, Mary-Catherine
    Ruffin, Felicia
    Dagher, Michael
    Chawla, Daniel G.
    Soares-Schanoski, Alessandra
    Spurbeck, Rachel R.
    Ndhlovu, Lishomwa C.
    Sebra, Robert
    Kleinstein, Steven H.
    Letizia, Andrew G.
    Ramos, Irene
    Fowler Jr, Vance G.
    Woods, Christopher W.
    Zaslavsky, Elena
    Troyanskaya, Olga G.
    Sealfon, Stuart C.
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (07): : 644 - +