Photoresist removal using an O2/N2 medium pressure plasma jet with high speed wafer scanning: Unimplanted resist studies

被引:0
作者
Bhargava, M. [1 ]
Craver, B. [1 ]
Torres, Jose L. [1 ]
Guo, H. [1 ]
Vemula, S. C. [1 ]
Srivastava, A. K. [2 ]
Berry, I. [2 ]
Wolfe, J. C. [1 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Axcelis Technol, Beverly, MA 01915 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2009年 / 27卷 / 06期
关键词
Gaussian distribution; photoresists; plasma materials processing; sputter etching; surface diffusion; ATMOSPHERIC-PRESSURE; ION-IMPLANTATION;
D O I
10.1116/1.3253476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors describe a plasma ashing system where a stationary jet of hot, activated gases removes photoresist from a scanning wafer. The jet is created by a reactant stream flowing through a 2.45 GHz surface wave discharge in a 6 mm quartz tube. For O-2/N-2 plasmas in the medium pressure range from 20 to 100 Torr, a luminous plasma jet emerges from the end of the discharge tube that transports both heat and reactive species to the wafer. A single scan results in a Gaussian track profile with a standard deviation of 7 mm for the source-to-substrate distance of 9 mm. A simple model of the ashing process, which assumes a thermally activated ash rate and Gaussian distributions for both power density and reactant flux, unifies the dependence of effective ash rate on the substrate temperature and scan speed at a constant power. The best fit activation energy at 2.5 kW is 0.23 eV, about half of the value found in conventional downstream ashing, implying that diffusion plays a significant role in limiting the ash rate. The peak thermal power density in a 2.5 kW jet at 80 Torr is 160 W/cm(2), resulting in an effective instantaneous ash rate of 2.5 mm/min for a scan speed of 70 cm/s and 200 degrees C chuck temperature. This implies that the time to clear a 1.2 mu m thick resist coating from a 300 mm wafer is 18 s.
引用
收藏
页码:2480 / 2486
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2007, INT TECHNOLOGY ROADM
[2]  
BAUSUM T, 2003, SEMICONDUCTOR I 0106
[3]   Stripping of photoresist using a remote thermal Ar/O2 and Ar/N2/O2 plasma [J].
Brussaard, GJH ;
Letourneur, KGY ;
Schaepkens, M ;
van de Sanden, MCM ;
Schram, DC .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (01) :61-66
[4]   Dopant loss of ultrashallow junction by wet chemical cleaning [J].
Buh, GH ;
Park, T ;
Yon, GH ;
Kim, SB ;
Jee, YJ ;
Hong, SJ ;
Ryoo, C ;
Yoo, JR ;
Lee, JW ;
Jun, CS ;
Shin, YG ;
Chung, UI ;
Moon, JT .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (01) :499-502
[5]   Plasma induced substrate damage in high dose implant resist strip process [J].
Chan, BW ;
Perng, BC ;
Sheu, L ;
Chiu, YH ;
Tao, HJ .
2003 8TH INTERNATIONAL SYMPOSIUM ON PLASMA- AND PROCESS-INDUCED DAMAGE, 2003, :73-76
[6]   The nature of residues following the ashing of arsenic implanted photoresist [J].
Draper, CW ;
Pearce, CW ;
Glick, JT ;
Gordon, M ;
Olness, GE ;
Bernasek, SL .
JOURNAL OF MATERIALS RESEARCH, 1997, 12 (10) :2799-2808
[7]   DECAPSULATION AND PHOTORESIST STRIPPING IN OXYGEN MICROWAVE PLASMAS [J].
DZIOBA, S ;
ESTE, G ;
NAGUIB, HM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (11) :2537-2541
[8]  
FLEMING D, 1977, FUTURE FAB INT, V4, P177
[9]   The effect of boundary layer diffusion on the overall rate of heterogeneous reactions [J].
Förtsch, D ;
Schnell, U ;
Hein, KRG .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (14) :4439-4443
[10]   ION-IMPLANTATION CHANGE IN THE CHEMICAL-STRUCTURE OF A RESIST [J].
FUJIMURA, S ;
YANO, H ;
KONNO, J .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1989, 39 (1-4) :809-812