Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method

被引:87
作者
Du, Lei [1 ]
Huang, Heng [2 ]
Yan, Jingwen [1 ]
Kim, Sungeun [1 ]
Risacher, Shannon L. [1 ]
Inlow, Mark [3 ]
Moore, Jason H. [4 ]
Saykin, Andrew J. [1 ]
Shen, Li [1 ]
机构
[1] Indiana Univ, Dept Radiol & Imaging Sci, Indianapolis, IN 46204 USA
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
[3] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[4] Univ Penn, Sch Med, Inst Biomed Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btw033
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Structured sparse canonical correlation analysis (SCCA) models have been used to identify imaging genetic associations. These models either use group lasso or graph-guided fused lasso to conduct feature selection and feature grouping simultaneously. The group lasso based methods require prior knowledge to define the groups, which limits the capability when prior knowledge is incomplete or unavailable. The graph-guided methods overcome this drawback by using the sample correlation to define the constraint. However, they are sensitive to the sign of the sample correlation, which could introduce undesirable bias if the sign is wrongly estimated. Results: We introduce a novel SCCA model with a new penalty, and develop an efficient optimization algorithm. Our method has a strong upper bound for the grouping effect for both positively and negatively correlated features. We show that our method performs better than or equally to three competing SCCA models on both synthetic and real data. In particular, our method identifies stronger canonical correlations and better canonical loading patterns, showing its promise for revealing interesting imaging genetic associations.
引用
收藏
页码:1544 / 1551
页数:8
相关论文
共 16 条
[1]   Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis [J].
Chen, Jun ;
Bushman, Frederic D. ;
Lewis, James D. ;
Wu, Gary D. ;
Li, Hongzhe .
BIOSTATISTICS, 2013, 14 (02) :244-258
[2]  
Chen X., 2012, AISTATS
[3]   An Efficient Optimization Algorithm for Structured Sparse CCA, with Applications to eQTL Mapping [J].
Chen X. ;
Liu H. .
Statistics in Biosciences, 2012, 4 (1) :3-26
[4]   GN-SCCA: GraphNet Based Sparse Canonical Correlation Analysis for Brain Imaging Genetics [J].
Du, Lei ;
Yan, Jingwen ;
Kim, Sungeun ;
Risacher, Shannon L. ;
Huang, Heng ;
Inlow, Mark ;
Moore, Jason H. ;
Saykin, Andrew J. ;
Shen, Li .
BRAIN INFORMATICS AND HEALTH (BIH 2015), 2015, 9250 :275-284
[5]  
Du L, 2014, LECT NOTES COMPUT SC, V8675, P329, DOI 10.1007/978-3-319-10443-0_42
[6]   Interpretable whole-brain prediction analysis with GraphNet [J].
Grosenick, Logan ;
Klingenberg, Brad ;
Katovich, Kiefer ;
Knutson, Brian ;
Taylor, Jonathan E. .
NEUROIMAGE, 2013, 72 :304-321
[7]   Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease [J].
Jiji, Sudevan ;
Smitha, Karavallil Achuthan ;
Gupta, Arun Kumar ;
Pillai, Vellara Pappukutty Mahadevan ;
Jayasree, Ramapurath S. .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (09) :1525-1530
[8]   Correspondence between fMRI and SNP data by group sparse canonical correlation analysis [J].
Lin, Dongdong ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
MEDICAL IMAGE ANALYSIS, 2014, 18 (06) :891-902
[9]   Sparse Canonical Correlation Analysis with Application to Genomic Data Integration [J].
Parkhomenko, Elena ;
Tritchler, David ;
Beyene, Joseph .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
[10]   APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study [J].
Ramanan, V. K. ;
Risacher, S. L. ;
Nho, K. ;
Kim, S. ;
Swaminathan, S. ;
Shen, L. ;
Foroud, T. M. ;
Hakonarson, H. ;
Huentelman, M. J. ;
Aisen, P. S. ;
Petersen, R. C. ;
Green, R. C. ;
Jack, C. R. ;
Koeppe, R. A. ;
Jagust, W. J. ;
Weiner, M. W. ;
Saykin, A. J. .
MOLECULAR PSYCHIATRY, 2014, 19 (03) :351-357