Anchoring Ultrafine ZnFe2O4/C Nanoparticles on 3D ZnFe2O4 Nanoflakes for Boosting Cycle Stability and Energy Density of Flexible Asymmetric Supercapacitor

被引:74
作者
Vadiyar, Madagonda M. [1 ]
Kolekar, Sanjay S. [1 ]
Chang, Jia-Yaw [3 ]
Ye, Zhibin [4 ]
Ghue, Anil V. [2 ]
机构
[1] Shivaji Univ, Dept Chem, Analyt Chem & Mat Sci Res Lab, Kolhapur 416004, Maharashtra, India
[2] Shivaji Univ, Dept Chem, Green Nanotechnol Lab, Kolhapur 416004, Maharashtra, India
[3] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[4] Laurentian Univ, Bharti Sch Engn, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
关键词
asymmetric supercapacitor; bioextract; nanoflake@nanoparticle; heterostructure; ZnFe2O4 thin films; HIGH-PERFORMANCE; THIN-FILM; NANOPOROUS CARBON; RATE-CAPABILITY; ELECTRODES; GRAPHENE; PECTIN; ARRAYS; HETEROSTRUCTURES; CAPACITANCE;
D O I
10.1021/acsami.7b06847
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterostructure-based metal oxide thin films are recognized as the leading material for new generation, high-performance, stable, and flexible supercapacitors. However, morphologies, like nanoflakes, nanotubes, nanorods, and so forth, have been found to suffer from issues related to poor cycle stability and energy density. Thus, to circumvent these problems, herein, we have developed a low-cost, high surface area, and environmentally benign self-assembled ZnEe(2)O(4) nanoflake@ZnFe2O4/C nanoparticle heterostructure electrode via anchoring ZnFe2O4 and carbon nanoparticles using an in situ biomediated green rotational chemical bath deposition approach for the first time. The synthesized ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle hetero-structure thin films demonstrate an excellent specific capacitance of 1884 F g(-1) at a current density of 5 mA cm(-2). Additionally, all solid-state flexible asymmetric supercapacitor devices were designed on the basis of ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructures as the negative electrode and reduced graphene oxide and energy density of 81 Wh kg(-1) at a power density of 3.9 kW kg(-1). Similarly, the asymmetric device exhibits ultralong cycle stability of 35 000 cycles by losing only 2% capacitance. The excellent performance of the device is attributed to the self-assembled organization of the heterostructures. Moreover, the in situ biomediated green strategy is also applicable for the synthesis of other metal oxide and carbon-based heterostructure electrodes.
引用
收藏
页码:26016 / 26028
页数:13
相关论文
共 62 条
[31]   Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework [J].
Salunkhe, Rahul R. ;
Tang, Jing ;
Kamachi, Yuichiro ;
Nakato, Teruyuki ;
Kim, Jung Ho ;
Yamauchi, Yusuke .
ACS NANO, 2015, 9 (06) :6288-6296
[32]   Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor [J].
Sankar, K. Vijaya ;
Selvan, R. Kalai ;
Meyrick, Danielle .
RSC ADVANCES, 2015, 5 (121) :99959-99967
[33]   Core-double shell ZnO/ZnS@Co3O4 hetero-structure as high performance pseudocapacitor [J].
Sarkar, Sanjit ;
Maiti, Sandipan ;
Mahanty, Sourindra ;
Basak, Durga .
DALTON TRANSACTIONS, 2016, 45 (22) :9103-9112
[34]   Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)2 for a pseudocapacitor [J].
Shanmugavani, A. ;
Selvan, R. Kalai .
RSC ADVANCES, 2014, 4 (51) :27022-27029
[35]   CoNi2S4-Graphene-2D-MoSe2 as an Advanced Electrode Material for Supercapacitors [J].
Shen, Jianfeng ;
Wu, Jingjie ;
Pei, Liyuan ;
Rodrigues, Marco-Tulio F. ;
Zhang, ZhuQing ;
Zhang, Fangfang ;
Zhang, Xiang ;
Ajayan, Pulickel M. ;
Ye, Mingxin .
ADVANCED ENERGY MATERIALS, 2016, 6 (13)
[36]   A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics [J].
Sun, Jinfeng ;
Huang, Yan ;
Fu, Chenxi ;
Huang, Yang ;
Zhu, Minshen ;
Tao, Xiaoming ;
Zhi, Chunyi ;
Hu, Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (38) :14877-14883
[37]   Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High-Performance Supercapacitor Electrodes [J].
Tang, Hongjie ;
Wang, Jiangyan ;
Yin, Huajie ;
Zhao, Huijun ;
Wang, Dan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2015, 27 (06) :1117-1123
[38]   CARBON MATERIALS MOF morphologies in control [J].
Tang, Jing ;
Yamauchi, Yusuke .
NATURE CHEMISTRY, 2016, 8 (07) :638-639
[39]   Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon [J].
Tang, Jing ;
Salunkhe, Rahul R. ;
Liu, Jian ;
Torad, Nagy L. ;
Imura, Masataka ;
Furukawa, Shuhei ;
Yamauchi, Yusuke .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1572-1580
[40]   Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors [J].
Tang, Peng-Yi ;
Han, Li-Juan ;
Genc, Aziz ;
He, Yong-Min ;
Zhang, Xuan ;
Zhang, Lin ;
Ramon Galan-Mascaros, Jose ;
Ramon Morante, Joan ;
Arbiol, Jordi .
NANO ENERGY, 2016, 22 :189-201