Electron backscattering coefficients of molybdenum and tungsten based on the Monte Carlo simulations

被引:19
作者
Yang, Lihao [1 ,2 ]
Hussain, Abrar [1 ,2 ,3 ]
Mao, Shifeng [4 ]
Da, Bo [5 ]
Tokesi, Karoly [6 ]
Ding, Z. J. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Kohat Univ Sci & Technol, Dept Phys, Kohat 26000, Khyber Pakhtunk, Pakistan
[4] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[5] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst MaDIS, 1-1 Namiki Tsukuba, Ibaraki 3050044, Japan
[6] Inst Nucl Res ATOMKI, Debrecen, EU, Hungary
关键词
Monte Carlo simulation; Backscattering coefficients; Molybdenum; Tungsten; Elastic and inelastic electron scattering; MEAN-FREE-PATH; SCATTERING; REFLECTION; TRANSPORT; SPECTRUM; SOLIDS; RANGE; YIELD;
D O I
10.1016/j.jnucmat.2021.153042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monte Carlo simulation is employed for the calculation of electron backscattering coefficients of molybdenum (Mo) and tungsten (W) at normal incidence angle and at energies between 100 eV to 100 keV. For the modelling of the electron elastic scattering we have applied the partial-wave expansion method using the Mott's cross-section, where the scattering potential includes the electron electrostatic potential, exchange potential and correlation-polarization potential. A relativistic dielectric functional approach with full Penn's algorithm is adopted for the calculation of the electron inelastic cross-section. The effect of phonon excitation, the interband transition of the loosely bound valance electrons, and the inner-shells electrons excitations are considered in the energy loss functions of the materials via the optical constants. We found that our present simulated data agree well with the experimental data at energies above 20 keV for both elements while they are well above the experimental data at lower incident energies. The disagreement can be explained by the possible surface contamination of carbonaceous atomic layers exist in the measurements by additional simulation for the contaminated surfaces. Moreover, for the better and detailed understanding of the energy dependence of the backscattering coefficients, we also present the backscattered electron energy spectra, angular distributions, and depth distributions for both samples. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 75 条
[1]  
[Anonymous], SCANNING
[2]  
[Anonymous], 1982, JEOL LTDHANDBOOK AUG
[3]   Dust in tokamaks: An overview of the physical model of the dust in tokamaks code [J].
Bacharis, Minas ;
Coppins, Michael ;
Allen, John E. .
PHYSICS OF PLASMAS, 2010, 17 (04)
[4]  
Bishop H E., 1966, THESIS U CAMBRIDGE U
[5]   Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification [J].
Brezinsek, S. ;
Coenen, J. W. ;
Schwarz-Selinger, T. ;
Schmid, K. ;
Kirschner, A. ;
Hakola, A. ;
Tabares, F. L. ;
van der Meiden, H. J. ;
Mayoral, M. -L. ;
Reinhart, M. ;
Tsitrone, E. ;
Ahlgren, T. ;
Aints, M. ;
Airila, M. ;
Almaviva, S. ;
Alves, E. ;
Angot, T. ;
Anita, V. ;
Parra, R. Arredondo ;
Aumayr, F. ;
Balden, M. ;
Bauer, J. ;
Ben Yaala, M. ;
Berger, B. M. ;
Bisson, R. ;
Bjorkas, C. ;
Radovic, I. Bogdanovic ;
Borodin, D. ;
Bucalossi, J. ;
Butikova, J. ;
Butoi, B. ;
Cadez, I. ;
Caniello, R. ;
Caneve, L. ;
Cartry, G. ;
Catarino, N. ;
Cekada, M. ;
Ciraolo, G. ;
Ciupinski, L. ;
Colao, F. ;
Corre, Y. ;
Costin, C. ;
Craciunescu, T. ;
Cremona, A. ;
De Angeli, M. ;
de Castro, A. ;
Dejarnac, R. ;
Dellasega, D. ;
Dinca, P. ;
Dittmar, T. .
NUCLEAR FUSION, 2017, 57 (11)
[6]   Intrinsic dust transport in ASDEX upgrade studied by fast imaging [J].
Brochard, F. ;
Rohde, V ;
Lunt, T. ;
Lopez, G. Suarez ;
Shalpegin, A. ;
Neu, R. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :268-274
[7]   Monte Carlo simulation of full energy spectrum of electrons emitted from silicon in Auger electron spectroscopy [J].
Cao, N. ;
Da, B. ;
Ming, Y. ;
Mao, S. F. ;
Goto, K. ;
Ding, Z. J. .
SURFACE AND INTERFACE ANALYSIS, 2015, 47 (01) :113-119
[8]   Bohmian trajectory-bloch wave approach to dynamical simulation of electron diffraction in crystal [J].
Cheng, L. ;
Ming, Y. ;
Ding, Z. J. .
NEW JOURNAL OF PHYSICS, 2018, 20
[9]   Uncertainty estimates for theoretical atomic and molecular data [J].
Chung, H-K ;
Braams, B. J. ;
Bartschat, K. ;
Csaszar, A. G. ;
Drake, G. W. F. ;
Kirchner, T. ;
Kokoouline, V. ;
Tennyson, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (36)
[10]   ITER operating limit definition criteria [J].
Ciattaglia, S. ;
Barabaschi, P. ;
Carretero, J. A. ;
Chiocchio, S. ;
Hureau, D. ;
Girard, J. Ph. ;
Gordon, C. ;
Portone, A. ;
Rodriguez Rodrigo, L. ;
Roldan, C. ;
Saibene, G. ;
Uzan-Elbez, J. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (12) :2059-2063