Efficient approach for bioethanol production from red seaweed Gelidium amansii

被引:77
作者
Kim, Ho Myeong [1 ]
Wi, Seung Gon [2 ]
Jung, Sera [3 ]
Song, Younho [1 ]
Bae, Hyeun-Jong [1 ,2 ,3 ]
机构
[1] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Kwangju 500757, South Korea
[2] Chonnam Natl Univ, Bioenergy Res Ctr, Kwangju 500757, South Korea
[3] Chonnam Natl Univ, Dept Wood Sci & Landscape Architecture, Kwangju 500757, South Korea
关键词
Gelidium amansii; Red seaweed; Autoclaving; SSF; Bioethanol; POPPING PRETREATMENT; GLOEOPHYLLUM-TRABEUM; GRACILARIA-VERRUCOSA; ETHANOL FERMENTATION; HYDROLYSIS; SACCHARIFICATION; POLYSACCHARIDES; DETOXIFICATION; RHODOPHYTA; RESOURCE;
D O I
10.1016/j.biortech.2014.10.050
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60 min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33 mg/mL, with a conversion yield of 74.7% after 6 h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78 mg/mL, with an ethanol conversion yield of 84.9% after 12 h. We also recorded an ethanol concentration of 25.7 mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24 h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 35 条
[1]  
Adney B., 2008, TECHNICAL REPORT
[2]  
[Anonymous], 2011, FISHERY AQUACULTURE
[3]   Progress in bioethanol processing [J].
Balat, Mustafa ;
Balat, Havva ;
Oz, Cahide .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (05) :551-573
[4]   Detoxification of lignocellulosic hydrolysates using sodium borohydride [J].
Cavka, Adnan ;
Jonsson, Leif J. .
BIORESOURCE TECHNOLOGY, 2013, 136 :368-376
[5]   Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment [J].
Choi, In Seong ;
Kim, Jae-Hoon ;
Wi, Seung Gon ;
Kim, Kyoung Hyoun ;
Bae, Hyeun-Jong .
APPLIED ENERGY, 2013, 102 :204-210
[6]   Conversion of coffee residue waste into bioethanol with using popping pretreatment [J].
Choi, In Seong ;
Wi, Seung Gon ;
Kim, Su-Bae ;
Bae, Hyeun-Jong .
BIORESOURCE TECHNOLOGY, 2012, 125 :132-137
[7]   How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? [J].
Ding, Shi-You ;
Liu, Yu-San ;
Zeng, Yining ;
Himmel, Michael E. ;
Baker, John O. ;
Bayer, Edward A. .
SCIENCE, 2012, 338 (6110) :1055-1060
[8]   Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula [J].
Freile-Pelegrín, Y ;
Murano, E .
BIORESOURCE TECHNOLOGY, 2005, 96 (03) :295-302
[9]   Study on saccharification techniques of seaweed wastes for the transformation of ethanol [J].
Ge, Leilei ;
Wang, Peng ;
Mou, Haijin .
RENEWABLE ENERGY, 2011, 36 (01) :84-89
[10]   Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies [J].
Hargreaves, Paulo Liboshi ;
Barcelos, Carolina Araujo ;
Augusto da Costa, Antonio Carlos ;
Pereira, Nei, Jr. .
BIORESOURCE TECHNOLOGY, 2013, 134 :257-263