Inherent Enhancement of Electronic Emission from Hexaboride Heterostructure

被引:20
作者
Voss, Johannes [1 ,2 ]
Vojvodic, Aleksandra [1 ,2 ]
Chou, Sharon H. [3 ]
Howe, Roger T. [3 ]
Abild-Pedersen, Frank [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW APPLIED | 2014年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; SINGLE-CRYSTAL GROWTH; LANTHANUM HEXABORIDE; THERMIONIC EMISSION; WORK FUNCTION; AB-INITIO; LAB6; EMITTER; VAPORIZATION;
D O I
10.1103/PhysRevApplied.2.024004
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on a nonequilibrium Green's-function approach to the calculation of emission currents from first principles, we show that cathodes consisting of LaB6/BaB6 superlattices can yield an order-of-magnitude higher thermionic current densities than pure LaB6 cathodes. Because of a 0.46-eV lowering of the work function, such a heterostructure cathode could thus be operated at significantly lower temperatures. Neither the stability nor the magnitude of electronic tunneling coefficients is compromised in the superlattice system as compared to pure LaB6, which is in contrast to the generally reduced stability and large dipole barriers in the case of adsorbate-induced lowering of the work function. The heterostructure could thus be used as a cathode material that at the same time is stable and has emission properties superior to those of pure LaB6.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Inducing thermionic emission from lanthanum hexaboride probes in Magnum-PSI
    Van den Berg-Stolp, J.
    Classen, I. G. J.
    van der Meiden, H. J.
    Vernimmen, J. W. M.
    Brons, S.
    van Rooij, G. J.
    NUCLEAR MATERIALS AND ENERGY, 2021, 29
  • [2] Electronic structures and properties of lanthanide hexaboride nanowires
    Wang, Lu
    Luo, Guangfu
    Valencia, Daniel
    Llavina, Carlos H. Sierra
    Sabirianov, Renat. F.
    Lu, Jing
    Lu, Jun-Qiang
    Mei, Wai-Ning
    Cheung, Chin Li
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (14)
  • [3] Fabrication, Densification and Thermionic Emission Property of Lanthanum Hexaboride
    Yu, Yiping
    Wang, Song
    Li, Wei
    Chen, Hongmei
    Chen, Zhaohui
    ELECTRONIC MATERIALS LETTERS, 2018, 14 (05) : 569 - 573
  • [4] Coexistence of Superconductivity and Superhardness in Beryllium Hexaboride Driven by Inherent Multicenter Bonding
    Wu, Lailei
    Wan, Biao
    Liu, Hanyu
    Gou, Huiyang
    Yao, Yansun
    Li, Zhiping
    Zhang, Jingwu
    Gao, Faming
    Mao, Ho-kwang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (23): : 4898 - 4904
  • [5] Vertically aligned nanorods of lanthanum hexaboride with efficient field emission properties
    Jha, Menaka
    Patra, Rajkumar
    Ghosh, Santanu
    Ganguli, Ashok K.
    SOLID STATE COMMUNICATIONS, 2013, 153 (01) : 35 - 39
  • [6] Fabrication, Densification and Thermionic Emission Property of Lanthanum Hexaboride
    Yiping Yu
    Song Wang
    Wei Li
    Hongmei Chen
    Zhaohui Chen
    Electronic Materials Letters, 2018, 14 : 569 - 573
  • [7] Thermionic emission behavior of rare-earth lanthanum hexaboride polycrystal and single crystal
    Gu, Zengjie
    Jia, Yanhui
    Gao, Hong
    Yang, Xinyu
    VACUUM, 2025, 238
  • [8] Structure and electron emission characteristics of sputtered lanthanum hexaboride films
    Waldhauser, W.
    Mitterer, C.
    Laimer, J.
    Stoeri, H.
    SURFACE & COATINGS TECHNOLOGY, 1995, 74-75 (1-3) : 890 - 896
  • [9] Thermionic emission measurement of sintered lanthanum hexaboride discs and modelling of their solar energy conversion performance
    Bellucci, A.
    Mastellone, M.
    Girolami, M.
    Serpente, V
    Sani, E.
    Sciti, D.
    Trucchi, D. M.
    CERAMICS INTERNATIONAL, 2021, 47 (14) : 20736 - 20739
  • [10] Metal Hexaboride Work Functions: Surface Configurations and the Electrical Double Layer from First-Principles
    Schmidt, Kevin M.
    Misture, Scott T.
    Graeve, Olivia A.
    Vasquez, Victor R.
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (03)