Mixed type iterations for multivalued nonexpansive mappings in hyperbolic spaces

被引:0
作者
Lei, Xian-Cai [1 ]
Li, Hua [2 ]
Di, Lan [3 ]
机构
[1] Yibin Univ, Inst Math, Yibin 644000, Sichuan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] Jiangnan Univ, Sch Digital Media, Wuxi 214122, Jiangsu, Peoples R China
来源
FIXED POINT THEORY AND APPLICATIONS | 2014年
关键词
mixed type iteration; multivalued nonexpansive mapping; common fixed point; Banach space; hyperbolic space; FIXED-POINTS; CONVERGENCE THEOREMS; ISHIKAWA ITERATION; MANN;
D O I
10.1186/1687-1812-2014-140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to extend the iteration scheme of multivalued nonexpansive mappings from a Banach space to a hyperbolic space by proving Delta-convergence theorems for two multivalued nonexpansive mappings in terms of mixed type iteration processes to approximate a common fixed point of two multivalued nonexpansive mappings in hyperbolic spaces. The results presented in this paper are new and can be regarded as an extension of corresponding results from Banach spaces to hyperbolic spaces in the literature.
引用
收藏
页数:12
相关论文
共 31 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]   FIXED-POINT THEOREMS FOR SET-VALUED MAPPINGS OF CONTRACTIVE TYPE [J].
ASSAD, NA ;
KIRK, WA .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (03) :553-562
[3]  
Bridson N, 1999, METRIC SPACES NONPOS
[4]   Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces [J].
Chang, S. S. ;
Wang, L. ;
Lee, H. W. Joseph ;
Chan, C. K. ;
Yang, L. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (05) :2611-2617
[5]  
DEBLASI FS, 1976, CR ACAD SCI A MATH, V283, P185
[6]  
Goebel K, 1984, Uniform convexity, hyperbolic geometry, and non-expansive mappings
[7]  
Gomiewicz L, 1999, TOPOLOGICAL FIXED PO
[8]   Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces [J].
Jung, Jong Soo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) :2345-2354
[9]   An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces [J].
Khan, Abdul Rahim ;
Fukhar-ud-din, Hafiz ;
Khan, Muhammad Aqeel Ahmad .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-12
[10]   A new one-step iterative scheme for approximating common fixed points of two multivalued nonexpansive mappings [J].
Khan S.H. ;
Abbas M. ;
Rhoades B.E. .
Rendiconti del Circolo Matematico di Palermo, 2010, 59 (1) :151-159