Extraction of Process-Structure Evolution Linkages from X-ray Scattering Measurements Using Dimensionality Reduction and Time Series Analysis

被引:27
作者
Brough, David B. [1 ]
Kannan, Abhiram [2 ]
Haaland, Benjamin [3 ]
Bucknall, David G. [2 ]
Kalidindi, Surya R. [1 ,2 ,4 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, North Ave NW, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, North Ave NW, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, North Ave NW, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, George W Woodruff Sch Mech Engn, North Ave NW, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Materials knowledge systems; Hierarchical materials; Multiscale materials; PyMKS; SAXS; Polyethylene; Process-structure linkage; Microstructure evolution; Time series; DATA SCIENCE; ELASTIC RESPONSE; MICROSTRUCTURE; POLYETHYLENE; REGRESSION; MODEL; ALGORITHMS; FRAMEWORK; VARIABLES; COMPLEX;
D O I
10.1007/s40192-017-0093-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid development of robust, reliable, and reduced-order process-structure evolution linkages that take into account hierarchical structure are essential to expedite the development and manufacturing of new materials. Towards this end, this paper lays a theoretical framework that injects the established time series analysis into the recently developed materials knowledge systems (MKS) framework. This new framework is first presented and then demonstrated on an ensemble dataset obtained using small-angle X-ray scattering on semi-crystalline linear low density polyethylene films from a synchrotron X-ray scattering experiment.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 70 条
[1]   Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge system [J].
Al-Harbi, Hamad F. ;
Landi, Giacomo ;
Kalidindi, Surya R. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (05)
[2]  
Allison J, 2009, INTEGRATED COMPUTATI, P223
[3]   Integrated Computational Materials Engineering: a Perspective on Progress and Future Steps [J].
Allison, John .
JOM, 2011, 63 (04) :15-18
[4]  
[Anonymous], TMS STUDY CHARTS COU
[5]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[6]  
Box G.E., 2015, TIME SERIES ANAL FOR
[7]   Microstructure-based knowledge systems for capturing process-structure evolution linkages [J].
Brough, David B. ;
Wheeler, Daniel ;
Warren, James A. ;
Kalidindi, Surya R. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (03) :129-140
[8]  
Brough DB, 2017, INTEGRATING IN PRESS
[9]  
Cebe P., 2000, Scattering from Polymers: Characterization by X-ray, Neutrons, and Light
[10]   A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells [J].
Cecen, A. ;
Fast, T. ;
Kumbur, E. C. ;
Kalidindi, S. R. .
JOURNAL OF POWER SOURCES, 2014, 245 :144-153