On the driving force for crack growth during thermal actuation of shape memory alloys

被引:36
作者
Baxevanis, T. [1 ]
Parrinello, A. F. [1 ,3 ]
Lagoudas, D. C. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
基金
美国国家科学基金会;
关键词
Shape Memory Alloys; Actuation; Phase transformation; Fracture toughness; Finite elements; FRACTURE TOUGHENING MECHANISM; FATIGUE; TRANSFORMATION; EVOLUTION; BEHAVIOR; STRAIN; MODEL; TIP;
D O I
10.1016/j.jmps.2015.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 41 条
  • [11] Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi
    Daymond, M. R.
    Young, M. L.
    Almer, J. D.
    Dunand, D. C.
    [J]. ACTA MATERIALIA, 2007, 55 (11) : 3929 - 3942
  • [12] Eshelby J., 1956, SOLID STATE PHYS
  • [13] Eshelby J., 1956, INELASTIC BEHAV SOLI
  • [14] Crack growth resistance of shape memory alloys by means of a cohesive zone model
    The Dreszer Fracture Mechanics Laboratory, Department of Solid Mechanics, Materials and Systems, The Fleischman Faculty of Engineering, 69978 Ramat Aviv, Israel
    [J]. J Mech Phys Solids, 2007, 10 (2157-2180): : 2157 - 2180
  • [15] Fracture mechanics and microstructure in NiTi shape memory alloys
    Gollerthan, S.
    Young, M. L.
    Baruj, A.
    Frenzel, J.
    Schmahl, W. W.
    Eggeler, G.
    [J]. ACTA MATERIALIA, 2009, 57 (04) : 1015 - 1025
  • [16] Aerospace applications of shape memory alloys
    Hartl, D. J.
    Lagoudas, D. C.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2007, 221 (G4) : 535 - 552
  • [17] Advanced methods for the analysis, design, and optimization of SMA-based aerostructures
    Hartl, D. J.
    Lagoudas, D. C.
    Calkins, F. T.
    [J]. SMART MATERIALS AND STRUCTURES, 2011, 20 (09)
  • [18] On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars
    He, Y. J.
    Sun, Q. P.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (11-12) : 1688 - 1695
  • [19] Ambient effect on damping peak of NiTi shape memory alloy
    He, Yongjun
    Yin, Hao
    Zhou, Runhua
    Sun, Qingping
    [J]. MATERIALS LETTERS, 2010, 64 (13) : 1483 - 1486
  • [20] Hellan K., 1984, INTRO FRACTURE MECH