Nonreciprocal optical solitons in a spinning Kerr resonator

被引:34
作者
Li, Baijun [1 ,2 ]
Ozdemir, Sahin K. [3 ,4 ]
Xu, Xun-Wei [1 ,2 ]
Zhang, Lin [5 ]
Kuang, Le-Man [1 ,2 ]
Jing, Hui [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[3] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[5] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710061, Peoples R China
基金
美国国家科学基金会;
关键词
FREQUENCY COMB; BACKSCATTERING; MICRORESONATORS; SUPPRESSION; GENERATION; BLOCKADE; SYMMETRY; DRIVEN; LIGHT;
D O I
10.1103/PhysRevA.103.053522
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a spinning nonlinear resonator as an experimentally accessible platform to achieve nonreciprocal control of optical solitons. Nonreciprocity here results from the relativistic Sagnac-Fizeau optical drag effect, which is different for pump fields propagating in the spinning direction or in the direction opposite to it. We show that in a spinning Kerr resonator, different soliton states appear for the input fields in different directions. These nonreciprocal solitons are more stable against losses induced by intermodal coupling between clockwise and counterclockwise modes of the resonator. Our work builds a bridge between nonreciprocal physics and soliton science, providing a promising route towards achieving soliton-wave optical isolators and one-way soliton communications.
引用
收藏
页数:8
相关论文
共 88 条
[11]   An All-Silicon Passive Optical Diode [J].
Fan, Li ;
Wang, Jian ;
Varghese, Leo T. ;
Shen, Hao ;
Niu, Ben ;
Xuan, Yi ;
Weiner, Andrew M. ;
Qi, Minghao .
SCIENCE, 2012, 335 (6067) :447-450
[12]   Soliton blockade in bidirectional microresonators [J].
Fan, Zhiwei ;
Skryabin, Dmitry, V .
OPTICS LETTERS, 2020, 45 (23) :6446-6449
[13]   Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator [J].
Fleury, Romain ;
Sounas, Dimitrios L. ;
Sieck, Caleb F. ;
Haberman, Michael R. ;
Alu, Andrea .
SCIENCE, 2014, 343 (6170) :516-519
[14]   20 years of developments in optical frequency comb technology and applications [J].
Fortier, Tara ;
Baumann, Esther .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[15]   Effect on Kerr comb generation in a clockwise and counter-clockwise mode coupled microcavity [J].
Fujii, Shun ;
Hori, Atsuhiro ;
Kato, Takumi ;
Suzuki, Ryo ;
Okabe, Yusuke ;
Yoshiki, Wataru ;
Jinnai, Akitoshi-Chen ;
Tanabe, Takasumi .
OPTICS EXPRESS, 2017, 25 (23) :28969-28982
[16]   Photonic-chip-based frequency combs [J].
Gaeta, Alexander L. ;
Lipson, Michal ;
Kippenberg, Tobias J. .
NATURE PHOTONICS, 2019, 13 (03) :158-169
[17]   Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J].
Godey, Cyril ;
Balakireva, Irina V. ;
Coillet, Aurelien ;
Chembo, Yanne K. .
PHYSICAL REVIEW A, 2014, 89 (06)
[18]  
Golubentsev A. A., 1984, Soviet Physics - JETP, V59, P26
[19]  
Hasegawa A., 1995, Solitons in Optical Communications
[20]   Solitons in optical communications [J].
Haus, HA ;
Wong, WS .
REVIEWS OF MODERN PHYSICS, 1996, 68 (02) :423-444