Nonreciprocal optical solitons in a spinning Kerr resonator

被引:34
作者
Li, Baijun [1 ,2 ]
Ozdemir, Sahin K. [3 ,4 ]
Xu, Xun-Wei [1 ,2 ]
Zhang, Lin [5 ]
Kuang, Le-Man [1 ,2 ]
Jing, Hui [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[3] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[5] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710061, Peoples R China
基金
美国国家科学基金会;
关键词
FREQUENCY COMB; BACKSCATTERING; MICRORESONATORS; SUPPRESSION; GENERATION; BLOCKADE; SYMMETRY; DRIVEN; LIGHT;
D O I
10.1103/PhysRevA.103.053522
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a spinning nonlinear resonator as an experimentally accessible platform to achieve nonreciprocal control of optical solitons. Nonreciprocity here results from the relativistic Sagnac-Fizeau optical drag effect, which is different for pump fields propagating in the spinning direction or in the direction opposite to it. We show that in a spinning Kerr resonator, different soliton states appear for the input fields in different directions. These nonreciprocal solitons are more stable against losses induced by intermodal coupling between clockwise and counterclockwise modes of the resonator. Our work builds a bridge between nonreciprocal physics and soliton science, providing a promising route towards achieving soliton-wave optical isolators and one-way soliton communications.
引用
收藏
页数:8
相关论文
共 88 条
[1]   Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices [J].
Ackemann, Thorsten ;
Firth, William J. ;
Oppo, Gian-Luca .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 :323-421
[2]   Ultrasensitive torque detection with an optically levitated nanorotor [J].
Ahn, Jonghoon ;
Xu, Zhujing ;
Bang, Jaehoon ;
Ju, Peng ;
Gao, Xingyu ;
Li, Tongcang .
NATURE NANOTECHNOLOGY, 2020, 15 (02) :89-+
[3]   Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity [J].
Arkhipov, Ievgen I. ;
Miranowicz, Adam ;
Di Stefano, Omar ;
Stassi, Roberto ;
Savasta, Salvatore ;
Nori, Franco ;
Ozdemir, Sahin K. .
PHYSICAL REVIEW A, 2019, 99 (05)
[4]   Quantum diffusion of microcavity solitons [J].
Bao, Chengying ;
Suh, Myoung-Gyun ;
Shen, Boqiang ;
Safak, Kemal ;
Dai, Anan ;
Wang, Heming ;
Wu, Lue ;
Yuan, Zhiquan ;
Yang, Qi-Fan ;
Matsko, Andrey B. ;
Kaertner, Franz X. ;
Vahala, Kerry J. .
NATURE PHYSICS, 2021, 17 (04) :462-+
[5]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[6]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[7]   Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators [J].
Chembo, Yanne K. ;
Menyuk, Curtis R. .
PHYSICAL REVIEW A, 2013, 87 (05)
[8]   Ultra-dense optical data transmission over standard fibre with a single chip source [J].
Corcoran, Bill ;
Tan, Mengxi ;
Xu, Xingyuan ;
Boes, Andreas ;
Wu, Jiayang ;
Nguyen, Thach G. ;
Chu, Sai T. ;
Little, Brent E. ;
Morandotti, Roberto ;
Mitchell, Arnan ;
Moss, David J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Optical frequency combs: Coherently uniting the electromagnetic spectrum [J].
Diddams, Scott A. ;
Vahala, Kerry ;
Udem, Thomas .
SCIENCE, 2020, 369 (6501) :267-+
[10]  
Englebert N., ARXIV21010778