UNIFORM SUPERCONVERGENCE ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD FOR A SINGULARLY PERTURBED PROBLEM IN 1-D

被引:54
作者
Xie, Ziqing [1 ]
Zhang, Zhimin
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Superconvergence; discontinuous Galerkin method; finite element; singularly perturbed problem; convection-diffusion;
D O I
10.1090/S0025-5718-09-02297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been observed from the authors' numerical experiments (2007) that the Local Discontinuous Galerkin (LDG) method converges uniformly under the Shishkin mesh for singularly perturbed two-point boundary problems of the convection-diffusion type. Especially when using a piecewise polynomial space of degree k, the LDG solution achieves the optimal convergence rate k+1 under the L-2-norm, and a superconvergence rate 2k+1 for the one-sided flux uniformly with respect to the singular perturbation parameter E. In this paper, we investigate the theoretical aspect of this phenomenon under a simplified ODE model. In particular, we establish uniform convergence rates root epsilon(ln N/N)(k+1) for the L-2-norm and (ln N/N)(2k+1) for the one-sided flux inside the boundary layer region. Here N (even) is the number of elements.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2001, LAYER RESOLVING GRID
[2]  
Celiker F, 2006, MATH COMPUT, V76, P67
[3]  
Chen C., 2001, Structure theory of superconvergence of finite elements
[4]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[5]  
Cockburn B, 2003, MATH COMPUT, V72, P577, DOI 10.1090/S0025-5718-02-01464-3
[6]   GALERKIN APPROXIMATIONS FOR 2 POINT BOUNDARY PROBLEM USING CONTINUOUS, PIECEWISE POLYNOMIAL SPACES [J].
DOUGLAS, J ;
DUPONT, T .
NUMERISCHE MATHEMATIK, 1974, 22 (02) :99-109
[7]  
Hundsdorfer W., 2003, NUMERICAL SOLUTION T, V1, DOI DOI 10.1007/978-3-662-09017-6
[8]  
Melenk JM, 2002, hp-Finite element methods for singular perturbations. Number 1796
[9]  
Miller J.J.H., 2012, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions
[10]  
Morton K.W., 1996, Numerical Solution of Convection-Diffusion Problems