On prediction of traffic flows in smart cities: a multitask deep learning based approach

被引:14
作者
Wang, Fucheng [1 ]
Xu, Jiajie [1 ]
Liu, Chengfei [2 ]
Zhou, Rui [2 ]
Zhao, Pengpeng [1 ]
机构
[1] Soochow Univ, Inst Artificial Intelligence, Sch Comp Sci & Technol, Suzhou, Peoples R China
[2] Swinburne Univ Technol, Swinburne, Australia
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2021年 / 24卷 / 03期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Traffic flow; Deep learning; Graph convolutional networks; Multitask learning; GRAPH CONVOLUTIONAL NETWORKS; NEURAL-NETWORK; FRAMEWORK;
D O I
10.1007/s11280-021-00877-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of transportation systems, traffic data have been largely produced in daily lives. Finding the insights of all these complex data is of great significance to vehicle dispatching and public safety. In this work, we propose a multitask deep learning model called Multitask Recurrent Graph Convolutional Network (MRGCN) for accurately predicting traffic flows in the city. Specifically, we design a multitask framework consisting of four components: a region-flow encoder for modeling region-flow dynamics, a transition-flow encoder for exploring transition-flow correlations, a context modeling component for contextualized fusion of two types of traffic flows and a task-specific decoder for predicting traffic flows. Particularly, we introduce Dual-attention Graph Convolutional Gated Recurrent Units (DGCGRU) to simultaneously capture spatial and temporal dependencies, which integrate graph convolution and recurrent model as a whole. Extensive experiments are carried out on two real-world datasets and the results demonstrate that our proposed method outperforms several existing approaches.
引用
收藏
页码:805 / 823
页数:19
相关论文
共 40 条
[11]  
Guo SN, 2019, AAAI CONF ARTIF INTE, P922
[12]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587
[13]  
Li Y., 2018, INT C LEARN REPR
[14]  
Lin ZQ, 2019, AAAI CONF ARTIF INTE, P1020
[15]  
Lv ZJ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3470
[16]   Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction [J].
Ma, Xiaolei ;
Dai, Zhuang ;
He, Zhengbing ;
Ma, Jihui ;
Wang, Yong ;
Wang, Yunpeng .
SENSORS, 2017, 17 (04)
[17]   Long short-term memory neural network for traffic speed prediction using remote microwave sensor data [J].
Ma, Xiaolei ;
Tao, Zhimin ;
Wang, Yinhai ;
Yu, Haiyang ;
Wang, Yunpeng .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 54 :187-197
[18]  
Mikolov T., 2013, Advances in Neural Information Processing Systems, V26, P3111, DOI 10.48550/arXiv.1310.4546
[19]  
Pan, 2002, ICDM, P595
[20]   A Frequency-Aware Spatio-Temporal Network for Traffic Flow Prediction [J].
Peng, Shunfeng ;
Shen, Yanyan ;
Zhu, Yanmin ;
Chen, Yuting .
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT II, 2019, 11447 :697-712