Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19

被引:14
作者
Huang, Jialu [1 ]
Ding, Yubo [2 ]
Yao, Jingwei [2 ]
Zhang, Minghui [1 ]
Zhang, Yu [1 ]
Xie, Zhuoyi [1 ]
Zuo, Jianhong [1 ,2 ,3 ]
机构
[1] Univ South China, Hengyang Med Sch, Lab Translat Med, Hengyang 421001, Peoples R China
[2] Univ South China, Nanhua Hosp, Hengyang Med Sch, Hengyang 421002, Peoples R China
[3] Univ South China, Affiliated Hosp 3, Hengyang Med Sch, Hengyang 421900, Peoples R China
关键词
COVID-19; nasal vaccination; nanovaccine; DRUG-DELIVERY; CHITOSAN; VACCINE; NANOPARTICLES; IMMUNIZATION; REINFECTION; LIPOSOMES; ADJUVANT; CARRIERS;
D O I
10.3390/vaccines10030405
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have been distributed to the population, the shortcomings of vaccines and the continuous emergence of SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells, and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2, SARS-CoV-2 variants, or SARS-CoV-n.
引用
收藏
页数:15
相关论文
共 118 条
  • [81] A future vaccination campaign against COVID-19 at risk of vaccine hesitancy and politicisation
    Peretti-Watel, Patrick
    Seror, Valerie
    Cortaredona, Sebastien
    Launay, Odile
    Raude, Jocelyn
    Verger, Pierre
    Beck, Francois
    Legleye, Stephane
    L'Haridon, Olivier
    Ward, Jeremy
    [J]. LANCET INFECTIOUS DISEASES, 2020, 20 (07) : 769 - 770
  • [82] Recent Advances and Future Perspectives in Polymer-Based Nanovaccines
    Pippa, Natassa
    Gazouli, Maria
    Pispas, Stergios
    [J]. VACCINES, 2021, 9 (06)
  • [83] Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system
    Pramanik, Sheersha
    Sali, Vaishnavi
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 169 : 103 - 121
  • [84] Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration
    Qian, Yunzhu
    Zhou, Xuefeng
    Zhang, Feimin
    Diekwisch, Thomas G. H.
    Luan, Xianghong
    Yang, Jianxin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) : 37381 - 37396
  • [85] Cardiac Events Potentially Associated to Remdesivir: An Analysis from the European Spontaneous Adverse Event Reporting System
    Rafaniello, Concetta
    Ferrajolo, Carmen
    Sullo, Maria Giuseppa
    Gaio, Mario
    Zinzi, Alessia
    Scavone, Cristina
    Gargano, Francesca
    Coscioni, Enrico
    Rossi, Francesco
    Capuano, Annalisa
    [J]. PHARMACEUTICALS, 2021, 14 (07)
  • [86] Biomaterials, biological molecules, and polymers in developing vaccines
    Ravi, Shruthi Polla
    Shamiya, Yasmeen
    Chakraborty, Aishik
    Elias, Cynthia
    Paul, Arghya
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2021, 42 (10) : 813 - 828
  • [87] Design of Experiments to Achieve an Efficient Chitosan-Based DNA Vaccine Delivery System
    Rodolfo, Carlos
    Eusebio, Dalinda
    Ventura, Cathy
    Nunes, Renato
    Florindo, Helena F.
    Costa, Diana
    Sousa, Angela
    [J]. PHARMACEUTICS, 2021, 13 (09)
  • [88] A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate
    Sanchez-Felipe, Lorena
    Vercruysse, Thomas
    Sharma, Sapna
    Ma, Ji
    Lemmens, Viktor
    Van Looveren, Dominique
    Arkalagud Javarappa, Mahadesh Prasad
    Boudewijns, Robbert
    Malengier-Devlies, Bert
    Liesenborghs, Laurens
    Kaptein, Suzanne J. F.
    De Keyzer, Carolien
    Bervoets, Lindsey
    Debaveye, Sarah
    Rasulova, Madina
    Seldeslachts, Laura
    Li, Li-Hsin
    Jansen, Sander
    Yakass, Michael Bright
    Verstrepen, Babs E.
    Boszormenyi, Kinga P.
    Kiemenyi-Kayere, Gwendoline
    van Driel, Nikki
    Quaye, Osbourne
    Zhang, Xin
    ter Horst, Sebastiaan
    Mishra, Niraj
    Deboutte, Ward
    Matthijnssens, Jelle
    Coelmont, Lotte
    Vandermeulen, Corinne
    Heylen, Elisabeth
    Vergote, Valentijn
    Schols, Dominique
    Wang, Zhongde
    Bogers, Willy
    Kuiken, Thijs
    Verschoor, Ernst
    Cawthorne, Christopher
    Van Laere, Koen
    Opdenakker, Ghislain
    Vande Velde, Greetje
    Weynand, Birgit
    Teuwen, Dirk E.
    Matthys, Patrick
    Neyts, Johan
    Jan Thibaut, Hendrik
    Dallmeier, Kai
    [J]. NATURE, 2021, 590 (7845) : 320 - 325
  • [89] Nanoengineering of vaccines using natural polysaccharides
    Sara Cordeiro, Ana
    Jose Alonso, Maria
    de la Fuente, Maria
    [J]. BIOTECHNOLOGY ADVANCES, 2015, 33 (06) : 1279 - 1293
  • [90] Expression and characterization of SARS-CoV-2 spike proteins
    Schaub, Jeffrey M.
    Chou, Chia-Wei
    Kuo, Hung-Che
    Javanmardi, Kamyab
    Hsieh, Ching-Lin
    Goldsmith, Jory
    DiVenere, Andrea M.
    Le, Kevin C.
    Wrapp, Daniel
    Byrne, Patrick O.
    Hjorth, Christy K.
    Johnson, Nicole, V
    Ludes-Meyers, John
    Nguyen, Annalee W.
    Wang, Nianshuang
    Lavinder, Jason J.
    Ippolito, Gregory C.
    Maynard, Jennifer A.
    McLellan, Jason S.
    Finkelstein, Ilya J.
    [J]. NATURE PROTOCOLS, 2021, 16 (11) : 5339 - 5356