An Unsupervised Boosting Strategy for Outlier Detection Ensembles

被引:14
作者
Campos, Guilherme O. [1 ,2 ]
Zimek, Arthur [2 ]
Meira, Wagner, Jr. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[2] Univ Southern Denmark, Dept Math & Comp Sci, Odense, Denmark
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I | 2018年 / 10937卷
基金
欧盟地平线“2020”;
关键词
Outlier detection; Ensembles; Boosting; Ensemble selection; MINING OUTLIERS; ALGORITHMS; CONSENSUS;
D O I
10.1007/978-3-319-93034-3_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble techniques have been applied to the unsupervised outlier detection problem in some scenarios. Challenges are the generation of diverse ensemble members and the combination of individual results into an ensemble. For the latter challenge, some methods tried to design smaller ensembles out of a wealth of possible ensemble members, to improve the diversity and accuracy of the ensemble (relating to the ensemble selection problem in classification). We propose a boosting strategy for combinations showing improvements on benchmark datasets.
引用
收藏
页码:564 / 576
页数:13
相关论文
共 42 条
[1]  
Angiulli F., 2002, Principles of Data Mining and Knowledge Discovery. 6th European Conference, PKDD 2002. Proceedings (Lecture Notes in Artificial Intelligence Vol.2431), P15
[2]  
[Anonymous], 2008, P 14 ACM SIGKDD INT
[3]  
[Anonymous], 2011, Proceedings of the 11th SIAM International Conference on Data Mining
[4]  
[Anonymous], 2014, P 2014 SIAM INT C DA, DOI [10.1137/1.9781611973440.63, DOI 10.1137/1.9781611973440.63]
[5]  
[Anonymous], 2007, ACM Transactions on Knowledge Discovery from Data, DOI DOI 10.1145/1217299.1217303
[6]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[7]  
Brown G., 2005, Information Fusion, V6, P5, DOI 10.1016/j.inffus.2004.04.004
[8]   On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study [J].
Campos, Guilherme O. ;
Zimek, Arthur ;
Sander, Jorg ;
Campello, Ricardo J. G. B. ;
Micenkova, Barbora ;
Schubert, Erich ;
Assent, Ira ;
Houle, Michael E. .
DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (04) :891-927
[9]  
Caruana R., 2004, P ICML, P1
[10]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15