DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES

被引:6
作者
Choi, Daeshik [1 ]
机构
[1] So Illinois Univ, Edwardsville Dept Math & Stat, Box 1653, Edwardsville, IL 62026 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 01期
关键词
Determinantal inequalities; Fischer's inequality; determinants of block matrices; positive definite matrices;
D O I
10.7153/mia-19-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(i), i = 1, ..., m, be positive definite matrices with diagonal blocks A(i)((j)), 1 <= j <= k, where A(1)((j)), ..., A(m)((j)) are of the same size for each j. We prove the inequality det (Sigma(m)(i=1)A(i)(-1)) >= det(Sigma(m)(i=1)(A(i)((1)))(-1))center dot center dot center dot det(Sigma(m)(i=1)(A(i)((k)))(-1)) and more determinantal inequalities related to positive definite matrices.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [31] Scaling symmetric positive definite matrices to prescribed row sums
    O'Leary, DP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 185 - 191
  • [32] DISCRETE REGRESSION METHODS ON THE CONE OF POSITIVE-DEFINITE MATRICES
    Boumal, Nicolas
    Absil, P-A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4232 - 4235
  • [33] On the Bures-Wasserstein distance between positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    EXPOSITIONES MATHEMATICAE, 2019, 37 (02) : 165 - 191
  • [34] Geometric Distance Between Positive Definite Matrices of Different Dimensions
    Lim, Lek-Heng
    Sepulchre, Rodolphe
    Ye, Ke
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5401 - 5405
  • [35] Jordan triple endomorphisms and isometries of spaces of positive definite matrices
    Molnar, Lajos
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (01) : 12 - 33
  • [36] Maps on positive definite matrices preserving Bregman and Jensen divergences
    Molnar, Lajos
    Pitrik, Jozsef
    Virosztek, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 : 174 - 189
  • [37] Learning Log-Determinant Divergences for Positive Definite Matrices
    Cherian, Anoop
    Stanitsas, Panagiotis
    Wang, Jue
    Harandi, Mehrtash T.
    Morellas, Vassilios
    Papanikolopoulos, Nikos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5088 - 5102
  • [38] REMARKS ON TWO DETERMINANTAL INEQUALITIES
    Tam, Tin-Yau
    Zhang, Pingping
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 815 - 823
  • [39] Structure of Hiai-Petz parametrized geometry for positive definite matrices
    Fujii, Jun Ichi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 318 - 326
  • [40] Elliptic isometries of the manifold of positive definite real matrices with the trace metric
    Alberto Dolcetti
    Donato Pertici
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 575 - 592