DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES

被引:6
|
作者
Choi, Daeshik [1 ]
机构
[1] So Illinois Univ, Edwardsville Dept Math & Stat, Box 1653, Edwardsville, IL 62026 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 01期
关键词
Determinantal inequalities; Fischer's inequality; determinants of block matrices; positive definite matrices;
D O I
10.7153/mia-19-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(i), i = 1, ..., m, be positive definite matrices with diagonal blocks A(i)((j)), 1 <= j <= k, where A(1)((j)), ..., A(m)((j)) are of the same size for each j. We prove the inequality det (Sigma(m)(i=1)A(i)(-1)) >= det(Sigma(m)(i=1)(A(i)((1)))(-1))center dot center dot center dot det(Sigma(m)(i=1)(A(i)((k)))(-1)) and more determinantal inequalities related to positive definite matrices.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [1] EXTENSION OF DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES
    Fu, Xiaohui
    Liu, Yang
    Liu, Shunqin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 355 - 359
  • [2] Inequalities for the Wasserstein mean of positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 576 : 108 - 123
  • [3] Positive definite matrices and differentiable reproducing kernel inequalities
    Buescu, Jorge
    Paixao, A. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) : 279 - 292
  • [4] Nesbitt and Shapiro cyclic sum inequalities for positive definite matrices
    Choudhury, Projesh Nath
    Sivakumar, K. C.
    ADVANCES IN OPERATOR THEORY, 2022, 7 (01)
  • [5] Nesbitt and Shapiro cyclic sum inequalities for positive definite matrices
    Projesh Nath Choudhury
    K. C. Sivakumar
    Advances in Operator Theory, 2022, 7
  • [6] Analogues of Some Determinantal Inequalities for Sector Matrices
    Liu, J.
    Sheng, X.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 53 - 59
  • [7] Ordering positive definite matrices
    Mostajeran C.
    Sepulchre R.
    Information Geometry, 2018, 1 (2) : 287 - 313
  • [8] Some determinantal inequalities for Hadamard and Fan products of matrices
    Fu, Xiaohui
    Liu, Yang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [9] Some determinantal inequalities for Hadamard and Fan products of matrices
    Xiaohui Fu
    Yang Liu
    Journal of Inequalities and Applications, 2016
  • [10] Measurable diagonalization of positive definite matrices
    Quintana, Yamilet
    Rodriguez, Jose M.
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 91 - 97