Recent advances in cartilage tissue engineering:: From the choice of cell sources to the use of bioreactors

被引:5
作者
Martin, I
Démarteau, O
Braccini, A
机构
[1] Univ Basel Hosp, Dept Surg, CH-4031 Basel, Switzerland
[2] Univ Basel Hosp, Dept Res, CH-4031 Basel, Switzerland
关键词
tissue engineering; cartilage repair; cell source; bioactive factor; polymer scaffold; bioreactor; mechanical loading;
D O I
10.1299/jsmec.45.851
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grafting engineered cartilage tissues represents a promising approach for the repair of joint injuries. Recent animal experiments have demonstrated that tissues engineered by culturing chondrocytes on 3D scaffolds in bioreactors provide functional templates for orderly repair of large osteochondral lesions. To date, however, a reproducible generation of uniform cartilage tissues of predefined size starting from adult human cells has not been achieved. In this paper we review some of the recent advances and challenges ahead in the identification of appropriate (i) cell sources, 00 bioactive factors, (iii) 3D scaffolds and (iv) bioreactors for human cartilage tissue engineering. We also present an example of bow integrated efforts in, these different areas can help addressing fundamental questions and advancing the field of cartilage tissue engineering towards clinical use. The presented experiment demonstrates that human nasal chondrocytes are responsive to dynamic loading and thus could be further investigated as a cell source for implantation in a joint environment.
引用
收藏
页码:851 / 861
页数:11
相关论文
共 69 条
[1]  
Aigner J, 1998, J BIOMED MATER RES, V42, P172, DOI 10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO
[2]  
2-M
[3]   A biodegradable composite scaffold for cell transplantation [J].
Ameer, GA ;
Mahmood, TA ;
Langer, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2002, 20 (01) :16-19
[4]   Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro [J].
Binette, F ;
McQuaid, DP ;
Haudenschild, DR ;
Yaeger, PC ;
McPherson, JM ;
Tubo, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :207-216
[5]   REEXPRESSION OF CARTILAGE-SPECIFIC GENES BY DEDIFFERENTIATED HUMAN ARTICULAR CHONDROCYTES CULTURED IN ALGINATE BEADS [J].
BONAVENTURE, J ;
KADHOM, N ;
COHENSOLAL, L ;
NG, KH ;
BOURGUIGNON, J ;
LASSELIN, C ;
FREISINGER, P .
EXPERIMENTAL CELL RESEARCH, 1994, 212 (01) :97-104
[6]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[7]   Articular cartilage: Injuries and potential for healing [J].
Buckwalter, JA .
JOURNAL OF ORTHOPAEDIC & SPORTS PHYSICAL THERAPY, 1998, 28 (04) :192-202
[8]  
Buckwalter JA, 1998, AAOS INSTR COURS LEC, V47, P477
[9]  
BUSCHMANN MD, 1995, J CELL SCI, V108, P1497
[10]   Semisynthetic resorbable materials from hyaluronan esterification [J].
Campoccia, D ;
Doherty, P ;
Radice, M ;
Brun, P ;
Abatangelo, G ;
Williams, DF .
BIOMATERIALS, 1998, 19 (23) :2101-2127