Signatures of homoclinic motion in quantum chaos

被引:36
作者
Wisniacki, DA [1 ]
Vergini, E
Benito, RM
Borondo, F
机构
[1] Univ Autonoma Madrid, Dept Quim C 9, E-28049 Madrid, Spain
[2] Univ Buenos Aires, FCEN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
[3] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina
[4] Univ Autonoma Madrid, ETSI, Dept Fis, E-28049 Madrid, Spain
关键词
D O I
10.1103/PhysRevLett.94.054101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1991, CHAOS QUANTUM PHYS
[2]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[3]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[4]   SCARS IN GROUPS OF EIGENSTATES IN A CLASSICALLY CHAOTIC SYSTEM [J].
DEPOLAVIEJA, GG ;
BORONDO, F ;
BENITO, RM .
PHYSICAL REVIEW LETTERS, 1994, 73 (12) :1613-1616
[5]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[6]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[7]   Linear and nonlinear theory of eigenfunction scars [J].
Kaplan, L ;
Heller, EJ .
ANNALS OF PHYSICS, 1998, 264 (02) :171-206
[8]   Orbit bifurcations and the scarring of wave functions [J].
Keating, JP ;
Prado, SD .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2012) :1855-1872
[9]  
MCDONALD SW, 1983, 14837 LBL
[10]   On the quantisation of homoclinic motion [J].
Ozorio de Almeida, A. M. .
NONLINEARITY, 1989, 2 (04) :519-540