Higher order symmetric duality in nondifferentiable multi-objective programming problems involving generalized cone convex functions

被引:13
作者
Agarwal, Ravi P. [1 ]
Ahmad, Izhar [1 ,3 ]
Jayswal, Anurag [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Birla Inst Technol, Dept Appl Math, Ranchi 835215, Bihar, India
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Multi-objectiveprogramming; K-F; -; convexity; Cone constraints; Efficiency; Duality theoems;
D O I
10.1016/j.mcm.2010.06.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A pair of Mond-Weir type multi-objective higher order symmetric dual programs over arbitrary cones is formulated. Weak, strong and converse duality theorems are established under higher order K-F-convexity assumptions. Our results generalize several known results in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1644 / 1650
页数:7
相关论文
共 17 条
[1]   Higher-order duality in nondifferentiable multiobjective programming [J].
Ahmad, I. ;
Husain, Z. ;
Sharma, Sarita .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (9-10) :989-1002
[2]   Multiobjective mixed symmetric duality involving cones [J].
Ahmad, I. ;
Husain, Z. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :319-326
[3]   SYMMETRIC DUALITY IN NONLINEAR PROGRAMMING [J].
BAZARAA, MS ;
GOODE, JJ .
OPERATIONS RESEARCH, 1973, 21 (01) :1-9
[4]   Higher-order symmetric duality in nondifferentiable multiobjective programming problems [J].
Chen, XH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (02) :423-435
[5]   SYMMETRIC DUAL NONLINEAR PROGRAMS [J].
DANTZIG, GB ;
EISENBERG, E ;
COTTLE, RW .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) :809-+
[6]  
Dorn W. S., 1960, J. Oper. Res. Soc. Japan, V2, P93
[7]   Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones [J].
Gulati, T. R. ;
Mehndiratta, Geeta .
OPTIMIZATION LETTERS, 2010, 4 (02) :293-309
[8]   Higher-order symmetric duality with cone constraints [J].
Gulati, T. R. ;
Gupta, S. K. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :776-781
[9]   On second-order symmetric duality in nondifferentiable programming [J].
Hou, SH ;
Yang, XM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) :491-498
[10]   Higher-order symmetric duality in vector optimization problem involving generalized cone-invex functions [J].
Kassem, Mohamed Abd El-Hady .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) :405-409