Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties

被引:131
作者
Yang, Shikuan [1 ,2 ,3 ]
Cai, Weiping [1 ]
Kong, Lingce [5 ]
Lei, Yong [2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei 230031, Peoples R China
[2] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[3] Univ Munster, Ctr Nanotechnol, D-48149 Munster, Germany
[4] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai 201800, Peoples R China
[5] Inst Chem Def, Dept 3, Beijing 102205, Peoples R China
基金
欧洲研究理事会;
关键词
ENHANCED RAMAN-SPECTROSCOPY; RESOLVED NANOSPHERE LITHOGRAPHY; OPTICAL-PROPERTIES; GOLD NANOSHELLS; HOLLOW SPHERES; NANOPARTICLES; AG; NANOSTRUCTURES; NANOCRYSTALS; SCATTERING;
D O I
10.1002/adfm.201000467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface patterns of nanoshell arrays play an important role in diverse applications including surface-enhanced Raman scattering (SERS) sensors, lithium-ion batteries, solar cells, and optical devices. This paper describes an innovative surface nanopatterning technique for realizing large-scale ordered arrays of metallic spherical nanoshells with well-defined structures. Ag nanoshell arrays are prepared using polystyrene sphere templates by an electrophoretic process in Ag colloidal solutions. The fabricated Ag nanoshell arrays have a high controllability of the structural parameters, including the diameter, the surface roughness, and the intershell spacing, giving rise to the tunable properties of nanoshell arrays. As an example, tunable SERS and localized surface plasmon resonance of the nanoshell arrays are demonstrated by controlling the structural parameters. The surface nanopatterning technique shown in this paper is a general fabrication process in achieving not only metallic nanoshell arrays, but also nanoshell arrays of semiconductors and metallic oxides.
引用
收藏
页码:2527 / 2533
页数:7
相关论文
共 37 条
[31]   Ag@SiO2 Core-Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering [J].
Wang, Wei ;
Li, Zhipeng ;
Gu, Baohua ;
Zhang, Zhenyu ;
Xu, Hongxing .
ACS NANO, 2009, 3 (11) :3493-3496
[32]   Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres:: Synthesis and performance in reversible Li-ion storage [J].
Wang, Y ;
Su, FB ;
Lee, JY ;
Zhao, XS .
CHEMISTRY OF MATERIALS, 2006, 18 (05) :1347-1353
[33]   Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography [J].
Whitney, AV ;
Myers, BD ;
Van Duyne, RP .
NANO LETTERS, 2004, 4 (08) :1507-1511
[34]   Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals [J].
Xu, XL ;
Asher, SA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7940-7945
[35]   Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating [J].
Yang, Jinhu ;
Sasaki, Takehiko .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :2049-2056
[36]   From Nanoparticles to Nanoplates: Preferential Oriented Connection of Ag Colloids during Electrophoretic Deposition [J].
Yang, Shikuan ;
Cai, Weiping ;
Liu, Guangqiang ;
Zeng, Haibo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (18) :7692-7696
[37]   Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J].
Yin, YD ;
Rioux, RM ;
Erdonmez, CK ;
Hughes, S ;
Somorjai, GA ;
Alivisatos, AP .
SCIENCE, 2004, 304 (5671) :711-714