Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties

被引:129
作者
Yang, Shikuan [1 ,2 ,3 ]
Cai, Weiping [1 ]
Kong, Lingce [5 ]
Lei, Yong [2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei 230031, Peoples R China
[2] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[3] Univ Munster, Ctr Nanotechnol, D-48149 Munster, Germany
[4] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai 201800, Peoples R China
[5] Inst Chem Def, Dept 3, Beijing 102205, Peoples R China
基金
欧洲研究理事会;
关键词
ENHANCED RAMAN-SPECTROSCOPY; RESOLVED NANOSPHERE LITHOGRAPHY; OPTICAL-PROPERTIES; GOLD NANOSHELLS; HOLLOW SPHERES; NANOPARTICLES; AG; NANOSTRUCTURES; NANOCRYSTALS; SCATTERING;
D O I
10.1002/adfm.201000467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface patterns of nanoshell arrays play an important role in diverse applications including surface-enhanced Raman scattering (SERS) sensors, lithium-ion batteries, solar cells, and optical devices. This paper describes an innovative surface nanopatterning technique for realizing large-scale ordered arrays of metallic spherical nanoshells with well-defined structures. Ag nanoshell arrays are prepared using polystyrene sphere templates by an electrophoretic process in Ag colloidal solutions. The fabricated Ag nanoshell arrays have a high controllability of the structural parameters, including the diameter, the surface roughness, and the intershell spacing, giving rise to the tunable properties of nanoshell arrays. As an example, tunable SERS and localized surface plasmon resonance of the nanoshell arrays are demonstrated by controlling the structural parameters. The surface nanopatterning technique shown in this paper is a general fabrication process in achieving not only metallic nanoshell arrays, but also nanoshell arrays of semiconductors and metallic oxides.
引用
收藏
页码:2527 / 2533
页数:7
相关论文
共 37 条
  • [21] Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals
    Michaels, AM
    Nirmal, M
    Brus, LE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (43) : 9932 - 9939
  • [22] Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
    Nie, SM
    Emery, SR
    [J]. SCIENCE, 1997, 275 (5303) : 1102 - 1106
  • [23] A hybridization model for the plasmon response of complex nanostructures
    Prodan, E
    Radloff, C
    Halas, NJ
    Nordlander, P
    [J]. SCIENCE, 2003, 302 (5644) : 419 - 422
  • [24] Electronic structure and optical properties of gold nanoshells
    Prodan, E
    Nordlander, P
    Halas, NJ
    [J]. NANO LETTERS, 2003, 3 (10) : 1411 - 1415
  • [25] Structural tunability of the plasmon resonances in metallic nanoshells
    Prodan, E
    Nordlander, P
    [J]. NANO LETTERS, 2003, 3 (04) : 543 - 547
  • [26] TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells
    Qian, Jiangfeng
    Liu, Ping
    Xiao, Yang
    Jiang, Yan
    Cao, Yuliang
    Ai, Xinping
    Yang, Hanxi
    [J]. ADVANCED MATERIALS, 2009, 21 (36) : 3663 - +
  • [27] Morphology-controlled growth of large-area two-dimensional ordered pore arrays
    Sun, FQ
    Cai, WP
    Li, Y
    Cao, BQ
    Lei, Y
    Zhang, LD
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (03) : 283 - 288
  • [28] Shape-controlled synthesis of gold and silver nanoparticles
    Sun, YG
    Xia, YN
    [J]. SCIENCE, 2002, 298 (5601) : 2176 - 2179
  • [29] Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes
    Sun, YG
    Xia, YN
    [J]. ANALYTICAL CHEMISTRY, 2002, 74 (20) : 5297 - 5305
  • [30] Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries
    Teki, Ranganath
    Datta, Moni K.
    Krishnan, Rahul
    Parker, Thomas C.
    Lu, Toh-Ming
    Kumta, Prashant N.
    Koratkar, Nikhil
    [J]. SMALL, 2009, 5 (20) : 2236 - 2242