Moment bounds for a class of stochastic nonlinear fractional Volterra integral equations of the second kind

被引:0
作者
Omaba, McSylvester Ejighikeme [1 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Math, Hafar Al Batin, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES | 2022年 / 9卷 / 08期
关键词
Existence and uniqueness results; Fractional integrals; Moment growth bounds; Nonlinear Volterra integral equation; Stochastic Volterra integral equation; INEQUALITIES;
D O I
10.21833/ijaas.2022.08.019
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper studies and compares the second moment (Energy growth) bounds for solutions to a class of stochastic fractional Volterra integral equations of the second kind, under some Lipschitz continuity conditions on the parameters. The result shows that both solutions exhibit exponential growth but at different rates. The existence and uniqueness of the mild solutions are established via the Banach fixed point theorem. (c) 2022 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:152 / 157
页数:6
相关论文
共 10 条
[1]  
Agarwal R., 2015, Progress in Fractional Differentiation and Applications, V1, P145
[2]   Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems [J].
Berenguer, M. I. ;
Gamez, D. ;
Garralda-Guillem, A. I. ;
Serrano Perez, M. C. .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[3]   Intermittence and nonlinear parabolic stochastic partial differential equations [J].
Foondun, Mohammud ;
Khoshnevisan, Davar .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :548-568
[4]  
HAMDAN S., 2019, J APPL MATH, V2019
[5]  
Natalini P, 2000, MATH INEQUAL APPL, V3, P69
[6]   Inequalities and Bounds for the Incomplete Gamma Function [J].
Neuman, Edward .
RESULTS IN MATHEMATICS, 2013, 63 (3-4) :1209-1214
[7]  
Omaba M.E., 2021, Partial Differ. Equ. Appl. Math, V4, P1
[8]   Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation [J].
Omaba, McSylvester Ejighikeme .
CHAOS SOLITONS & FRACTALS, 2021, 147
[9]  
Omaba ME, 2021, J FRACTIONAL CALCULU, V12, P1, DOI [10.3390/math1012208, DOI 10.3390/MATH1012208]
[10]  
Wazwaz A.-M., 2011, LINEAR NONLINEAR INT