Embedded Deep Learning for Sleep Staging

被引:0
|
作者
Turetken, Engin [1 ]
Van Zaen, Jerome [2 ]
Delgado-Gonzalo, Ricard [3 ]
机构
[1] CSEM, Embedded Vis Syst Grp, Neuchatel, Switzerland
[2] CSEM, Signal Proc Grp, Neuchatel, Switzerland
[3] CSEM, Embedded Software Grp, Neuchatel, Switzerland
关键词
CNN; RNN; deep learning; embedded; SoC; sleep; polysomnography; e-health; m-health;
D O I
10.1109/SDS.2019.00005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapidly-advancing technology of deep learning (DL) into the world of the Internet of Things (IoT) has not fully entered in the fields of m-Health yet. Among the main reasons are the high computational demands of DL algorithms and the inherent resource-limitation of wearable devices. In this paper, we present initial results for two deep learning architectures used to diagnose and analyze sleep patterns, and we compare them with a previously presented hand-crafted algorithm. The algorithms are designed to be reliable for consumer healthcare applications and to be integrated into low-power wearables with limited computational resources.
引用
收藏
页码:95 / 96
页数:2
相关论文
共 50 条
  • [41] Fusion of End-to-End Deep Learning Models for Sequence-to-Sequence Sleep Staging
    Huy Phan
    Chen, Oliver Y.
    Koch, Philipp
    Mertins, Alfred
    De Vos, Maarten
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1829 - 1833
  • [42] Correction to: Energy Efficient Deep Learning Inference Embedded on FPGA for Sleep Apnea Detection
    Omiya Hassan
    Tanmoy Paul
    Md Maruf Hossain Shuvo
    Dilruba Parvin
    Rushil Thakker
    Mengrui Chen
    Abu Saleh Mohammad Mosa
    Syed Kamrul Islam
    Journal of Signal Processing Systems, 2023, 95 : 1353 - 1353
  • [43] Sleep Staging Using Wearables and Deep Neural Networks
    Davidson, Shaun
    Roman, Cristian
    Carter, Jonathan
    Harford, Mirae
    Tarassenko, Lionel
    2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI, 2023,
  • [44] Generalizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings
    Rusanen, Matias
    Huttunen, Riku
    Korkalainen, Henri
    Myllymaa, Sami
    Toeyraes, Juha
    Myllymaa, Katja
    Sigurdardottir, Sigridur
    Olafsdottir, Kristin A.
    Leppaenen, Timo
    Arnardottir, Erna S.
    Kainulainen, Samu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1869 - 1880
  • [45] Deep learning for automated sleep staging using instantaneous heart rate (vol 3, 106, 2020)
    Sridhar, Niranjan
    Shoeb, Ali
    Stephens, Philip
    Kharbouch, Alaa
    Ben Shimol, David
    Burkart, Joshua
    Ghoreyshi, Atiyeh
    Myers, Lance
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [46] A Comparison of Signal Combinations for Deep Learning-Based Simultaneous Sleep Staging and Respiratory Event Detection
    Huttunen, Riku
    Leppanen, Timo
    Duce, Brett
    Arnardottir, Erna S.
    Nikkonen, Sami
    Myllymaa, Sami
    Toyras, Juha
    Korkalainen, Henri
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (05) : 1704 - 1714
  • [47] InsightSleepNet: the interpretable and uncertainty-aware deep learning network for sleep staging using continuous Photoplethysmography
    Borum Nam
    Beomjun Bark
    Jeyeon Lee
    In Young Kim
    BMC Medical Informatics and Decision Making, 24
  • [48] A Deep Learning Strategy for Automatic Sleep Staging Based on Two-Channel EEG Headband Data
    Casciola, Amelia A.
    Carlucci, Sebastiano K.
    Kent, Brianne A.
    Punch, Amanda M.
    Muszynski, Michael A.
    Zhou, Daniel
    Kazemi, Alireza
    Mirian, Maryam S.
    Valerio, Jason
    McKeown, Martin J.
    Nygaard, Haakon B.
    SENSORS, 2021, 21 (10)
  • [49] END-TO-END DEEP LEARNING MODEL FOR AUTOMATIC SLEEP STAGING USING RAW PSG WAVEFORMS
    Olesen, A. N.
    Peppard, P. E.
    Sorensen, H. B.
    Jennum, P. J.
    Mignot, E.
    SLEEP, 2018, 41 : A121 - A121
  • [50] Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice
    Yue, Huijun
    Chen, Zhuqi
    Guo, Wenbin
    Sun, Lin
    Dai, Yidan
    Wang, Yiming
    Ma, Wenjun
    Fan, Xiaomao
    Wen, Weiping
    Lei, Wenbin
    SLEEP MEDICINE REVIEWS, 2024, 74