Embedded Deep Learning for Sleep Staging

被引:0
作者
Turetken, Engin [1 ]
Van Zaen, Jerome [2 ]
Delgado-Gonzalo, Ricard [3 ]
机构
[1] CSEM, Embedded Vis Syst Grp, Neuchatel, Switzerland
[2] CSEM, Signal Proc Grp, Neuchatel, Switzerland
[3] CSEM, Embedded Software Grp, Neuchatel, Switzerland
来源
2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS) | 2019年
关键词
CNN; RNN; deep learning; embedded; SoC; sleep; polysomnography; e-health; m-health;
D O I
10.1109/SDS.2019.00005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapidly-advancing technology of deep learning (DL) into the world of the Internet of Things (IoT) has not fully entered in the fields of m-Health yet. Among the main reasons are the high computational demands of DL algorithms and the inherent resource-limitation of wearable devices. In this paper, we present initial results for two deep learning architectures used to diagnose and analyze sleep patterns, and we compare them with a previously presented hand-crafted algorithm. The algorithms are designed to be reliable for consumer healthcare applications and to be integrated into low-power wearables with limited computational resources.
引用
收藏
页码:95 / 96
页数:2
相关论文
共 12 条
  • [1] Berry RB., 2012, Rules, Terminology and Technical Specifications, V176, P7
  • [2] Deng L, 2013, IEEE INT NEW CIRC
  • [3] He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [4] Lai Liangzhen, 2018, CMSIS NN EFFICIENT N
  • [5] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [6] Deep learning for healthcare: review, opportunities and challenges
    Miotto, Riccardo
    Wang, Fei
    Wang, Shuang
    Jiang, Xiaoqian
    Dudley, Joel T.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2018, 19 (06) : 1236 - 1246
  • [7] Norman R. G., 2005, SLEEP, V23, P901
  • [8] Inter-scorer Reliability between Sleep Centers Can Teach Us What to Improve in the Scoring Rules
    Penzel, Thomas
    Zhang, Xiaozhe
    Fietze, Ingo
    [J]. JOURNAL OF CLINICAL SLEEP MEDICINE, 2013, 9 (01): : 89 - 91
  • [9] Optical wrist-worn device for sleep monitoring
    Renevey, Ph.
    Delgado-Gonzalo, R.
    Lemkaddem, A.
    Proenca, M.
    Lemay, M.
    Sola, J.
    Tarniceriu, A.
    Bertschi, M.
    [J]. EMBEC & NBC 2017, 2018, 65 : 615 - 618
  • [10] Renevey P, 2018, IEEE ENG MED BIO, P2861, DOI 10.1109/EMBC.2018.8512881