Flow-invariant closed sets with respect to nonlinear semigroup flows

被引:10
作者
Barbu, V
Pavel, NH [1 ]
机构
[1] Univ Iasi, Iasi 6600, Romania
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2003年 / 10卷 / 01期
关键词
nonlinear semigroup generators; flow invariant sets; tangential (contingent) cones; divergence; gradients; curl; Sobolev spaces; Enstrophy and Helicity sets; Navier-Stokes equations;
D O I
10.1007/s00030-003-1023-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general result on the flow-invariance of a closed subset with respect to a differential equation associated with a nonlinear semigroup generator on Banach spaces is given. Applications to the flow-invariance of controlled flux sets (including the Enstrophy and Helicity sets) with respect to semilinear parabolic equations and Navier-Stokes equations are given.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 11 条
[1]  
Arnold V. I., 1998, TOPOLOGICAL METHODS
[2]  
Barbu V., 1975, NONLINEAR SEMIGROUPS
[3]  
BARBU V, IN PRESS J MATH ANAL
[4]   ON A CHARACTERIZATION OF FLOW-INVARIANT SETS [J].
BREZIS, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (02) :261-&
[5]  
Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001
[6]   GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES [J].
CRANDALL, MG ;
LIGGETT, TM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) :265-&
[7]   DIFFERENTIAL EQUATIONS ON CLOSED SUBSETS OF A BANACH SPACE [J].
MARTIN, RH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :399-414
[8]  
MOTREANU D, 1999, PURE APPL MATH, V219
[9]  
Pavel N., 1977, Nonlinear Anal.: Theory Methods Appl, V1, P187, DOI [10.1016/0362-546X(77)90009-8, DOI 10.1016/0362-546X(77)90009-8]
[10]  
PAVEL NH, 1983, ISR J MATH, V46, P103, DOI 10.1007/BF02760625