Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

被引:28
作者
Oliveira, Eliezer Fernando [1 ]
Lavarda, Francisco Carlos [1 ,2 ]
机构
[1] Univ Estadual Paulista, UNESP, POSMAT Programa Posgrad Ciencia & Tecnol Mat, Bauru, SP, Brazil
[2] Univ Estadual Paulista, UNESP, Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Electronic materials; Organic compounds; Polymers; Computer modelling and simulation; Electronic structure; BAND-GAP POLYMERS; P3HT/PCBM SOLAR-CELLS; CONJUGATED POLYMERS; PERFORMANCE ENHANCEMENT; HETEROCYCLIC OLIGOMERS; NDDO APPROXIMATIONS; FULLERENE; CHARGE; FUNCTIONALIZATION; OLIGOTHIOPHENE;
D O I
10.1016/j.matchemphys.2014.09.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:923 / 932
页数:10
相关论文
共 82 条
[1]   Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small-Bandgap Polymer [J].
Ameri, Tayebeh ;
Min, Jie ;
Li, Ning ;
Machui, Florian ;
Baran, Derya ;
Forster, Michael ;
Schottler, Kristina J. ;
Dolfen, Daniel ;
Scherf, Ullrich ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2012, 2 (10) :1198-1202
[2]   Modelling polymers with side chains: MEH-PPV and P3HT [J].
Batagin-Neto, A. ;
Oliveira, E. F. ;
Graeff, C. F. O. ;
Lavarda, F. C. .
MOLECULAR SIMULATION, 2013, 39 (04) :309-321
[3]   Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: A first-principles study [J].
Bhatta, Ram S. ;
Tsige, Mesfin .
POLYMER, 2014, 55 (11) :2667-2672
[4]   Improved Force Field for Molecular Modeling of Poly(3-hexylthiophene) [J].
Bhatta, Ram S. ;
Yimer, Yeneneh Y. ;
Perry, David S. ;
Tsige, Mesfin .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (34) :10035-10045
[5]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[6]   Mind the gap! [J].
Bredas, Jean-Luc .
MATERIALS HORIZONS, 2014, 1 (01) :17-19
[7]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[8]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[9]  
Carey F. A, 2007, Advanced Organic Chemistry Part B: Reactions and Synthesis, V5th
[10]   Band structure engineering for low band gap polymers containing thienopyrazine [J].
Chao, Chi-Yang ;
Chao, Chung-Hsiang ;
Chen, Lung-Pin ;
Hung, Ying-Chieh ;
Lin, Shiang-Tai ;
Su, Wei-Fang ;
Lin, Ching-Fuh .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (15) :7331-7341