Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems

被引:186
作者
Ma, Hao [1 ]
Pan, Jian [1 ]
Ding, Feng [2 ,3 ]
Xu, Ling [3 ]
Ding, Wenfang [1 ]
机构
[1] Hubei Univ Technol, Sch Elect & Elect Engn, Hubei Key Lab High Efficiency Utilizat Solar Ener, Wuhan 430068, Hubei, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Shandong, Peoples R China
[3] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
iterative methods; vectors; parameter estimation; autoregressive moving average processes; least squares approximations; gradient methods; iterative parameter estimation; multivariable output-error-like autoregressive moving average systems; multivariable output-error-like system; autoregressive moving average noise; information vector; unknown variables; iterative search; parameter vector; identification problem; redundant parameter estimates; recursive least squares algorithm; GRADIENT ESTIMATION ALGORITHM; BILINEAR-SYSTEMS; MODEL RECOVERY; IDENTIFICATION; MATRIX; DESIGN;
D O I
10.1049/iet-cta.2019.0112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study considers the parameter estimation of a multi-variable output-error-like system with autoregressive moving average noise. In order to solve the problem of the information vector containing unknown variables, a least squares-based iterative algorithm is proposed by using the iterative search. The original system is divided into several subsystems by using the decomposition technique. However, the subsystems contain the same parameter vector, which poses a challenge for the identification problem, the approach taken here is to use the coupling identification concept to cut down the redundant parameter estimates. In addition, the recursive least squares algorithm is provided for comparison. The simulation results indicate that the proposed algorithms are effective.
引用
收藏
页码:3040 / 3051
页数:12
相关论文
共 62 条
[1]   Convergence of the iterative algorithm for a general Hammerstein system identification [J].
Bai, Er-Wei ;
Li, Kang .
AUTOMATICA, 2010, 46 (11) :1891-1896
[2]   On the Identification of Bilinear Forms With the Wiener Filter [J].
Benesty, Jacob ;
Paleologu, Constantin ;
Ciochina, Silviu .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) :653-657
[3]   A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems [J].
Chen, Guang-Yong ;
Gan, Min ;
Chen, C. L. Philip ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) :526-537
[4]   Modified Gram-Schmidt Method-Based Variable Projection Algorithm for Separable Nonlinear Models [J].
Chen, Guang-Yong ;
Gan, Min ;
Ding, Feng ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (08) :2410-2418
[5]   Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data [J].
Ding, Feng ;
Pan, Jian ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
MATHEMATICS, 2019, 7 (05)
[6]   Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle [J].
Ding, Feng ;
Liu, Xinggao ;
Chu, Jian .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (02) :176-184
[7]   Coupled-least-squares identification for multivariable systems [J].
Ding, Feng .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01) :68-79
[8]   Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems [J].
Ding, Feng ;
Liu, Guangjun ;
Liu, Xiaoping Peter .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) :1976-1981
[9]   Particle filtering based parameter estimation for systems with output-error type model structures [J].
Ding, Jie ;
Chen, Jiazhong ;
Lin, Jinxing ;
Wan, Lijuan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (10) :5521-5540
[10]   Imaging With 3-D Aperture Synthesis Radiometers [J].
Feng, Li ;
Li, Qingxia ;
Li, Yufang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04) :2395-2406