Combined influence of biophysical and biochemical cues on maintenance and proliferation of hematopoietic stem cells

被引:45
作者
Gvaramia, David [1 ]
Mueller, Eike [2 ]
Mueller, Katrin [4 ]
Atallah, Passant [1 ]
Tsurkan, Mikhail [1 ]
Freudenberg, Uwe [1 ]
Bornhaeuser, Martin [4 ]
Werner, Carsten [1 ,3 ]
机构
[1] Max Bergmann Ctr Biomat, Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany
[2] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Biointerfaces, CH-9014 St Gallen, Switzerland
[3] Tech Univ Dresden, Ctr Regenerat Therapies Dresden, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Med Clin 1, Dresden, Germany
关键词
Hematopoietic stem cell; 3D microenvironment; Substrate stiffness; Heparin; Cell fate; PROGENITOR CELLS; SUBSTRATE ELASTICITY; IN-VITRO; 3-DIMENSIONAL HYDROGELS; FATE; DIFFERENTIATION; EXPANSION; NICHES; MICROENVIRONMENTS; BIOMATERIALS;
D O I
10.1016/j.biomaterials.2017.05.023
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Homeostasis of hematopoietic stem and progenitor cells (HSPC) is controlled by a combination of biochemical and biophysical environmental cues in the bone marrow (BM) niche, where a tight balance of quiescence and proliferation of HSPC is maintained. Specifically, alongside soluble factors and extracellular matrix (ECM) proteins, spatial confinement and ECM stiffness have been recognized to be critical for regulation of HSPC fate. Here we employ a modular, glycosaminoglycan (GAG)-based biohybrid hydrogel system to balance proliferation of human HSPC and maintenance of quiescent hematopoietic stem cells (HSC) through simultaneous regulation of exogenous biochemical and biophysical cues. Our results demonstrate that HSPC respond to increased spatial confinement with lowered proliferation and cell cycling, which results in higher frequency of quiescent LTC-IC (long-term culture initiating cells), while GAG-rich 3D environments further support maintenance of the cells. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 56 条
[1]   Functional immobilization of signaling proteins enables control of stem cell fate [J].
Alberti, Kristin ;
Davey, Ryan E. ;
Onishi, Kento ;
George, Sophia ;
Salchert, Katrin ;
Seib, F. Philipp ;
Bornhaeuser, Martin ;
Pompe, Tilo ;
Nagy, Andras ;
Werner, Carsten ;
Zandstra, Peter W. .
NATURE METHODS, 2008, 5 (07) :645-650
[2]   Hematopoietic Stem Cells Count and Remember Self-Renewal Divisions [J].
Bernitz, Jeffrey M. ;
Kim, Huen Suk ;
MacArthur, Ben ;
Sieburg, Hans ;
Moore, Kateri .
CELL, 2016, 167 (05) :1296-+
[3]  
Caiazzo M, 2016, NAT MATER, V15, P344, DOI [10.1038/NMAT4536, 10.1038/nmat4536]
[4]  
Chaudhuri O, 2016, NAT MATER, V15, P326, DOI [10.1038/NMAT4489, 10.1038/nmat4489]
[5]   The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells [J].
Choi, Ji S. ;
Harley, Brendan A. C. .
BIOMATERIALS, 2012, 33 (18) :4460-4468
[6]   Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models [J].
Chwalek, Karolina ;
Tsurkan, Mikhail V. ;
Freudenberg, Uwe ;
Werner, Carsten .
SCIENTIFIC REPORTS, 2014, 4
[7]   Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice [J].
Conneally, E ;
Cashman, J ;
Petzer, A ;
Eaves, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9836-9841
[8]   Biological implications of glycosaminoglycan interactions with haemopoietic cytokines [J].
Coombe, Deirdre R. .
IMMUNOLOGY AND CELL BIOLOGY, 2008, 86 (07) :598-607
[9]   Medical progress: Hematopoietic stem-cell transplantation [J].
Copelan, EA .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (17) :1813-1826
[10]   APPLICATION OF PYRONIN-Y(G) IN CYTOCHEMISTRY OF NUCLEIC-ACIDS [J].
DARZYNKIEWICZ, Z ;
KAPUSCINSKI, J ;
TRAGANOS, F ;
CRISSMAN, HA .
CYTOMETRY, 1987, 8 (02) :138-145