Resonant interaction of relativistic electrons with realistic electromagnetic ion-cyclotron wave packets

被引:17
作者
Grach, Veronika S. [1 ]
Demekhov, Andrei G. [1 ,2 ]
Larchenko, Alexey V. [2 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia
[2] Polar Geophys Inst, Apatity, Russia
来源
EARTH PLANETS AND SPACE | 2021年 / 73卷 / 01期
基金
俄罗斯科学基金会;
关键词
Resonant interaction; Radiation belts; Precipitation; Relativistic electrons; EMIC waves; RADIATION BELT ELECTRONS; PITCH-ANGLE SCATTERING; WHISTLER-MODE WAVES; RAPID PRECIPITATION; MAGNETOSPHERE; ACCELERATION;
D O I
10.1186/s40623-021-01453-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We study the influence of real structure of electromagnetic ion-cyclotron wave packets in the Earth's radiation belts on precipitation of relativistic electrons. Automatic algorithm is used to distinguish isolated elements (wave packets) and obtain their amplitude and frequency profiles from satellite observations by Van Allen Probe B. We focus on rising-tone EMIC wave packets in the proton band, with a maximum amplitude of 1.2-1.6 nT. The resonant interaction of the considered wave packets with relativistic electrons 1.5-9 MeV is studied by numerical simulations. The precipitating fluxes are formed as a result of both linear and nonlinear interaction; for energies 2-5 MeV precipitating fluxes are close to the strong diffusion limit. The evolution of precipitating fluxes is influenced by generation of higher-frequency waves at the packet trailing edge near the equator and dissipation of lower-frequency waves in the He+ cyclotron resonance region at the leading edge. The wave packet amplitude modulation leads to a significant change of precipitated particles energy spectrum during short intervals of less than 1 minute. For short time intervals about 10-15 s, the approximation of each local amplitude maximum of the wave packet by a Gaussian amplitude profile and a linear frequency drift gives a satisfactory description of the resonant interaction.
引用
收藏
页数:17
相关论文
共 51 条
  • [1] Albert JM, 2009, GEOPHYS RES LETT, V36, DOI [10.1029/2009GL038904, 10.1029/2009GL03 8904]
  • [2] Aspects of Nonlinear Wave-Particle Interactions
    Albert, Jay M.
    Tao, Xin
    Bortnik, Jacob
    [J]. DYNAMICS OF THE EARTH'S RADIATION BELTS AND INNER MAGNETOSPHERE, 2012, 199 : 255 - +
  • [3] CYCLOTRON-RESONANCE IN AN INHOMOGENEOUS MAGNETIC-FIELD
    ALBERT, JM
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (08): : 2744 - 2750
  • [4] Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave
    Albert, JM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A9) : 21191 - 21209
  • [5] Probabilistic approach to nonlinear wave-particle resonant interaction
    Artemyev, A. V.
    Neishtadt, A. I.
    Vasiliev, A. A.
    Mourenas, D.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02):
  • [6] Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
    Artemyev, A. V.
    Mourenas, D.
    Agapitov, O. V.
    Vainchtein, D. L.
    Mozer, F. S.
    Krasnoselskikh, V.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (08)
  • [7] Bespalov P.A., 1986, Reviews of Plasma Physics, V10, P155
  • [8] Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons
    Chen, Lunjin
    Thorne, Richard M.
    Bortnik, Jacob
    Zhang, Xiao-Jia
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (10) : 9913 - 9925
  • [9] Recent progress in understanding Pcl pearl formation
    Demekhov, A. G.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2007, 69 (14) : 1609 - 1622
  • [10] Demekhov AG, 2006, GEOMAGN AERONOMY+, V46, P711, DOI [10.1134/S0016793206060053, 10.1134/s0016793206060053]