Information capacity of specific interactions

被引:25
作者
Huntley, Miriam H. [1 ,2 ]
Murugan, Arvind [1 ,2 ,3 ,4 ]
Brenner, Michael P. [1 ,2 ,5 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Kavli Inst Bionano Sci & Technol, Cambridge, MA 02138 USA
[3] Univ Chicago, Phys, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
specificity; self-assembly; colloid; mutual information; crosstalk; SELF; DNA; NUMBER; LIMITS; CRYSTALLIZATION; NANOPARTICLES; PARTICLES; NETWORKS; PROTEINS; COLLOIDS;
D O I
10.1073/pnas.1520969113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Specific interactions are a hallmark feature of self-assembly and signal-processing systems in both synthetic and biological settings. Specificity between components may arise from a wide variety of physical and chemical mechanisms in diverse contexts, from DNA hybridization to shape-sensitive depletion interactions. Despite this diversity, all systems that rely on interaction specificity operate under the constraint that increasing the number of distinct components inevitably increases off-target binding. Here we introduce "capacity," the maximal information encodable using specific interactions, to compare specificity across diverse experimental systems and to compute how specificity changes with physical parameters. Using this framework, we find that "shape" coding of interactions has higher capacity than chemical ("color") coding because the strength of off-target binding is strongly sublinear in binding-site size for shapes while being linear for colors. We also find that different specificity mechanisms, such as shape and color, can be combined in a synergistic manner, giving a capacity greater than the sum of the parts.
引用
收藏
页码:5841 / 5846
页数:6
相关论文
共 44 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[3]   The Shannon capacity of a union [J].
Alon, N .
COMBINATORICA, 1998, 18 (03) :301-310
[4]  
[Anonymous], 1998, Algorithmic self-assembly of DNA
[5]   Colloidal interactions and self-assembly using DNA hybridization [J].
Biancaniello, PL ;
Kim, AJ ;
Crocker, JC .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[6]   Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins [J].
Carrillo, Robert A. ;
Oezkan, Engin ;
Menon, Kaushiki P. ;
Nagarkar-Jaiswal, Sonal ;
Lee, Pei-Tseng ;
Jeon, Mili ;
Birnbaum, Michael E. ;
Bellen, Hugo J. ;
Garcia, K. Christopher ;
Zinn, Kai .
CELL, 2015, 163 (07) :1770-1782
[7]  
Cover T. M., 2012, ELEMENTS INFORM THEO
[8]   Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling [J].
Denkov, Nikolai ;
Tcholakova, Slavka ;
Lesov, Ivan ;
Cholakova, Diana ;
Smoukov, Stoyan K. .
NATURE, 2015, 528 (7582) :392-+
[9]  
Fischer Emil, 1894, Eur. J. Inorg. Chem, V27, P2985, DOI DOI 10.1002/CBER.18940270364
[10]   Forming electrical networks in three dimensions by self-assembly [J].
Gracias, DH ;
Tien, J ;
Breen, TL ;
Hsu, C ;
Whitesides, GM .
SCIENCE, 2000, 289 (5482) :1170-1172