Classification of Fano manifolds containing a negative divisor isomorphic to projective space

被引:14
作者
Tsukioka, Toru [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Tokyo 1528551, Japan
关键词
Fano variety; extremal contraction; Mori Theory; birational geometry;
D O I
10.1007/s10711-006-9122-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify n-dimensional complex Fano manifolds X (n >= 3) containing a divisor E isomorphic to Pn-1 such that deg N-E/X is strictly negative. Our main tool is the extremal contraction theory together with numerical arguments on intersection numbers of divisors on X. In the last section, we consider, more generally, Fano manifolds X containing a prime divisor with Picard number one, and show that the Picard number of such X is less than or equal to three.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 7 条
[1]   ON EXTREMAL RAYS OF THE HIGHER DIMENSIONAL VARIETIES [J].
ANDO, T .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :347-357
[2]   Complex manifolds whose blow-up at a point is Fano [J].
Bonavero, L ;
Campana, F ;
Wisniewski, JA .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :463-468
[3]  
LAZARSFELD R, 1984, LECT NOTES MATH, V1092, P29
[4]   CLASSIFICATION OF FANO 3-FOLDS WITH B2 GREATER-THAN-OR-EQUAL TO 2 [J].
MORI, S ;
MUKAI, S .
MANUSCRIPTA MATHEMATICA, 1981, 36 (02) :147-162
[5]  
TAKEUCHI K, 1989, COMPOS MATH, V71, P265
[6]   Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold [J].
Tsukioka, T .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (08) :581-586
[7]  
WISNIEWSKI JA, 1991, J REINE ANGEW MATH, V417, P141