Spin-dependent transport properties of a chromium porphyrin-based molecular embedded between two graphene nanoribbon electrodes

被引:29
作者
Chen, Tong [1 ,2 ]
Wang, Lingling [1 ,2 ]
Li, Xiaofei [3 ]
Luo, Kaiwu [1 ,2 ]
Xu, Liang [1 ,2 ]
Li, Quan [1 ,2 ]
Zhang, Xianghua [1 ,2 ,4 ]
Long, Mengqiu [3 ,5 ]
机构
[1] Hunan Univ, Sch Phys & Microelect Sci, Changsha 410082, Hunan, Peoples R China
[2] Key Lab Micro Nano Phys & Technol Hunan Prov, Changsha 410082, Hunan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Optoelect Informat, Chengdu 610054, Sichuan, Peoples R China
[4] Hunan Inst Engn, Dept Elect & Informat Engn, Xiangtan 411101, Peoples R China
[5] Cent S Univ, Inst Super Microstruct & Ultrafast Proc, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
NEGATIVE DIFFERENTIAL RESISTANCE; SPINTRONIC DEVICES; FILTER; BEHAVIORS; JUNCTIONS; CHAIN;
D O I
10.1039/c4ra09279a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By using the non-equilibrium Green's function formalism combined with density-functional theory, we present a theoretical study of the spin-dependent electron transport of a molecular device constructed from a chromium porphyrin molecule linking with two carbon chains sandwiched between two semi-infinite zigzag-edged graphene nanoribbon (ZGNR) electrodes, where the ZGNRs are modulated by an external magnetic field. The results show that the single spin-conducting can be obtained by performing different magnetic configuration of the leads. The coexistence of spin-filtering with 100% spin-polarization, rectifying and negative differential resistance (NDR) behaviors in our model device is demonstrated and mechanisms are proposed for these phenomena.
引用
收藏
页码:60376 / 60381
页数:6
相关论文
共 48 条
[1]   Spin filtering by a periodic spintronic device [J].
Aharony, Amnon ;
Entin-Wohlman, Ora ;
Tokura, Yasuhiro ;
Katsumoto, Shingo .
PHYSICAL REVIEW B, 2008, 78 (12)
[2]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[3]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[4]   Large on-off ratios and negative differential resistance in a molecular electronic device [J].
Chen, J ;
Reed, MA ;
Rawlett, AM ;
Tour, JM .
SCIENCE, 1999, 286 (5444) :1550-1552
[5]   Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points [J].
Chen, Tong ;
Li, Xiaofei ;
Wang, Lingling ;
Luo, Kaiwu ;
Li, Quan ;
Zhang, Xianghua ;
Shang, Xiongjun .
EPL, 2014, 105 (05)
[6]   Spin-dependent electronic transport through a porphyrin ring ligating an Fe(II) atom:: An ab initio study [J].
Chen, Yunqing ;
Prociuk, Alexander ;
Perrine, Trilisa ;
Dunietz, Barry D. .
PHYSICAL REVIEW B, 2006, 74 (24)
[7]   Chromium Porphyrin Arrays As Spintronic Devices [J].
Cho, Woo Jong ;
Cho, Yeonchoo ;
Min, Seung Kyu ;
Kim, Woo Youn ;
Kim, Kwang S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9364-9369
[8]   First-principles calculation of transport properties of a molecular device [J].
Di Ventra, M ;
Pantelides, ST ;
Lang, ND .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :979-982
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   OXIDATION OF CHROMIUM(III) PORPHYRINS TO THEIR PI-RADICAL CATIONS OR TO OXOCHROMIUM(IV) PORPHYRINS [J].
GULDI, DM ;
NETA, P ;
HAMBRIGHT, P .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1992, 88 (14) :2013-2019