Toric varieties whose blow-up at a point is Fano

被引:8
作者
Bonavero, L [1 ]
机构
[1] Univ Grenoble 1, Inst Fourier, UMR 5582, F-38402 St Martin Dheres, France
关键词
toric Fano varieties; blow-up; Mori theory;
D O I
10.2748/tmj/1113247651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify smooth toric Fano varieties of dimension n greater than or equal to 3 containing a toric divisor isomorphic to the (n - 1)-dimensional projective space. As a consequence of this classification, we show that any smooth complete toric variety X of dimension n greater than or equal to 3 with a fixed point X E X such that the blow-up B., (X) of X at x is Fano is isomorphic either to the n-dimensional projective space or to the blow-up of the n-dimensional projective space along an invariant linear codimension two subspace. As expected, such results are proved using toric Mori theory due to Reid.
引用
收藏
页码:593 / 597
页数:5
相关论文
共 9 条
  • [1] [Anonymous], ERGEBNISSE MATH GREN
  • [2] Batyrev V., 1982, MATH USSR IZVESTIYA, V19, P13
  • [3] Batyrev V. V., 1999, Algebraic geometry, V94, P1021
  • [4] On the birational geometry of toric Fano 4-folds
    Casagrande, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (12): : 1093 - 1098
  • [5] Fulton W., 1993, ANN MATH STUD, V131
  • [6] KOLLAR J, 1999, ERGEBNISSE MATH GREN, V32
  • [7] REID M, 1983, PROG MATH, V36
  • [8] Toward the classification of higher-dimensional toric Fano varieties
    Sato, H
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (03) : 383 - 413
  • [9] Watanabe K., 1982, Tokyo J. Math, V5, P37, DOI [10.3836/tjm/1270215033, DOI 10.3836/TJM/1270215033]