Quadratic Gravity

被引:131
作者
Salvio, Alberto [1 ]
机构
[1] CERN, Dept Theoret Phys, Geneva, Switzerland
关键词
renormalization group; gravity; fixed point; relativity; field theory; FREE QUANTUM-THEORY; ASYMPTOTIC FREEDOM; CANONICAL QUANTIZATION; FIXED-POINTS; RENORMALIZATION; STABILITY; INVARIANCE; UNITARITY; MODELS; MATTER;
D O I
10.3389/fphy.2018.00077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Adding the terms quadratic in the curvature to the Einstein-Hilbert action renders gravity renormalizable. This property is preserved in the presence of the most general renormalizable couplings with (and of) a generic quantum field theory (QFT). The price to pay is a massive ghost, which is due to the higher derivatives that the terms quadratic in the curvature imply. In this paper, the quadratic gravity scenario is reviewed including the recent progress on the related stability problem of higher derivative theories. The renormalization of the theory is also reviewed and the final form of the full renormalization group equations in the presence of a generic renormalizable QFT is presented. The theory can be extrapolated up to in finite energy through the renormalization group if all matter couplings flow to a fixed point (either trivial or interacting). Moreover, besides reviewing the above-mentioned topics, are some further insight on the ghost issue and the in finite energy extrapolation are provided. There is hope that in the future, this scenario might provide a phenomenologically viable and UV complete relativistic field theory of all interactions.
引用
收藏
页数:24
相关论文
共 141 条
[1]   Properties of the Binary Black Hole Merger GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (24)
[2]   Matter scattering in quadratic gravity and unitarity [J].
Abe, Yugo ;
Inami, Takeo ;
Izumi, Keisuke ;
Kitamura, Tomotaka .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (03)
[3]   Planck 2015 results XX. Constraints on inflation [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bondi, J. R. ;
Borrillu, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Christensen, P. R. ;
Churchl, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[4]   Quadratic gravity in first order formalism [J].
Alvarez, Enrique ;
Anero, Jesus ;
Gonzalez-Martin, Sergio .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10)
[5]   Aspects of quadratic gravity [J].
Alvarez-Gaume, Luis ;
Kehagias, Alex ;
Kounnas, Costas ;
Luest, Dieter ;
Riotto, Antonio .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (2-3) :176-189
[6]  
[Anonymous], 1993, C P C
[7]  
[Anonymous], 1992, Effective action in quantum gravity
[8]  
[Anonymous], 1850, Mem. Acad. St. Petersbourg
[9]  
Anselmi D, ARXIV180307777
[10]   Fakeons and Lee-Wick models [J].
Anselmi, Damiano .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02)