Recurrence quantification analysis and principal components in the detection of short complex signals

被引:122
作者
Zbilut, JP
Giuliani, A
Webber, CL
机构
[1] Rush Univ, Dept Physiol & Mol Biophys, Chicago, IL 60612 USA
[2] Ist Super Sanita, TCE, I-00161 Rome, Italy
[3] Loyola Univ, Stritch Sch Med, Dept Physiol, Maywood, IL 60153 USA
[4] Univ Roma La Sapienza, Dept Biochem, Rome, Italy
关键词
recurrence quantification analysis; recurrence plot; nonlinear dynamics; principal components; complexity; chaos;
D O I
10.1016/S0375-9601(97)00843-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recurrence plots were introduced to aid in the detection of signals in complicated data series. This effort was taken a step further by the quantification of recurrence plot elements. We now demonstrate the utility of combining recurrence quantification analysis with principal components analysis to allow for a probabilistic evaluation of the presence of deterministic signals in relatively short data lengths. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 28 条
[1]  
[Anonymous], RHYTHMS PHYSL SYSTEM
[2]  
[Anonymous], RHYTHMS PHYSL SYSTEM
[3]   NEURAL NETWORKS AND PRINCIPAL COMPONENT ANALYSIS - LEARNING FROM EXAMPLES WITHOUT LOCAL MINIMA [J].
BALDI, P ;
HORNIK, K .
NEURAL NETWORKS, 1989, 2 (01) :53-58
[4]  
BARTHOLOMEW DJ, 1984, BIOMETRIKA, V71, P221
[5]   ESTIMATING CORRELATION DIMENSION FROM A CHAOTIC TIME-SERIES - WHEN DOES PLATEAU ONSET OCCUR [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
SAUER, T ;
YORKE, JA .
PHYSICA D, 1993, 69 (3-4) :404-424
[6]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[7]   A nonrandom dynamic component in the synaptic noise of a central neuron [J].
Faure, P ;
Korn, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6506-6511
[8]   DIRECT DYNAMICAL TEST FOR DETERMINISTIC CHAOS AND OPTIMAL EMBEDDING OF A CHAOTIC TIME-SERIES [J].
GAO, JB ;
ZHENG, ZM .
PHYSICAL REVIEW E, 1994, 49 (05) :3807-3814
[9]   Recognizing randomness in a time series [J].
Gao, JB .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 106 (1-2) :49-56
[10]  
Giuliani A, 1996, BIOL CYBERN, V74, P181, DOI 10.1007/BF00204206