Strong-weak domatic numbers of graphs

被引:0
|
作者
Swaminathan, V
Thangaraju, P
机构
[1] Saraswathi Narayanan Coll, Dept Math, Madurai 625022, Tamil Nadu, India
[2] Madurai Kamaraj Univ, Sch Math, Madurai 625021, Tamil Nadu, India
来源
关键词
strong-weak domatic number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph and u, v is an element of V. If u v is an element of E and deg ugreater than or equal to deg v, then we say that a strongly dominates v and v weakly dominates u. A subset D of V is called strong dominating set, (sd-set) of G if every vertex in V - D is strongly dominated by, at least one vertex in D. Similarly, a weak dominating set (wd-set) of a graph G is defined. A partition V (G) = V-1 boolean OR V-2 boolean OR...boolean OR V-k is a strong-weak domatic partition (swd-partition) of G if each V-i is a sd-set or a wd-set. The strong-weak domatic number d*(G) of G is the maximum order of a swd-partition of G. In this paper, we investigate the properties of this parameter.
引用
收藏
页码:1841 / 1846
页数:6
相关论文
共 50 条
  • [1] On Domatic and Total Domatic Numbers of Cartesian Products of Graphs
    P. Francis
    Deepak Rajendraprasad
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [2] DOMATIC NUMBERS OF LATTICE GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (01) : 113 - 115
  • [3] The domatic numbers of factors of graphs
    Haynes, TW
    Henning, MA
    ARS COMBINATORIA, 2000, 56 : 161 - 173
  • [4] On Domatic and Total Domatic Numbers of Cartesian Products of Graphs
    Francis, P.
    Rajendraprasad, Deepak
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (03)
  • [5] ON K-DOMATIC NUMBERS OF GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (02) : 309 - 313
  • [6] Signed {k}-domatic numbers of graphs
    1600, Charles Babbage Research Centre (87):
  • [7] Signed distance κ-domatic numbers of graphs
    Sheikholeslami, S.-M. (s.m.sheikholeslami@azaruniv.edu), 1600, Charles Babbage Research Centre (83):
  • [8] CHROMATIC WEAK DOMATIC PARTITION IN GRAPHS
    Aristotle, P.
    Balamurugan, S.
    Lakshmi, P. Selva
    Swaminathan, V
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 279 - 286
  • [9] Signed (j, k)-domatic numbers of graphs
    Sheikholeslami, S. M.
    Volkmann, L.
    ARS COMBINATORIA, 2016, 126 : 73 - 86
  • [10] Dutch Scrambling and the Strong-Weak Distinction
    E. G. Ruys
    The Journal of Comparative Germanic Linguistics, 2001, 4 (1) : 39 - 67