Connected Domination Number and a New Invariant in Graphs with Independence Number Three

被引:0
作者
Bercov, Vladimir [1 ]
机构
[1] CUNY, Borough Manhattan Community Coll, Dept Math, 199 Chambers St, New York, NY 10007 USA
关键词
dominating set; number of Hadwiger; clique number; independence number;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Adding a connected dominating set of vertices to a graph G increases its number of Hadwiger h(G). Based on this obvious property in [2] we introduced a new invariant eta(G) for which eta(G) <= h(G). We continue to study its property. For a graph G with independence number three without induced chordless cycles C-7 and with n(G) vertices, eta(G) >= n(G)/4.
引用
收藏
页码:96 / 104
页数:9
相关论文
共 6 条
[1]  
Bacso G., 2004, Discussiones Mathematicae Graph Theory, V24, P503, DOI 10.7151/dmgt.1248
[2]  
Bercov V, 2019, COMPUT SCI J MOLD, V27, P23
[3]  
Duchet P., 1982, Annals of Discrete Mathematics, V13, P71, DOI [10.1016/S0304-0208(08)73549-7, DOI 10.1016/S0304-0208(08)73549-7]
[4]   Some results on the independence number of connected domination critical graphs [J].
Kaemawichanurat, P. ;
Jiarasuksakun, T. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) :190-196
[5]   Size, Order, and Connected Domination [J].
Mukwembi, Simon .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01) :141-144
[6]  
Plummer M. D., 2003, Discussiones Mathematicae Graph Theory, V23, P333, DOI 10.7151/dmgt.1206