Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations

被引:130
作者
Stabile, Giovanni [1 ]
Rozza, Gianluigi [1 ]
机构
[1] SISSA, Math Area, Int Sch Adv Studies, MathLab, Via Bonomea 265, I-34136 Trieste, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Proper orthogonal decomposition; Finite volume approximation; Poisson equation for pressure; Inf-sup approximation; Supremizer velocity space enrichment; Navier-Stokes equations; PARTIAL-DIFFERENTIAL-EQUATIONS; POSTERIORI ERROR-BOUNDS; BASIS APPROXIMATION; EVOLUTION-EQUATIONS; NUMERICAL-SOLUTION; PROJECTION METHODS; FLUID-DYNAMICS; PRESSURE-TERM; FLOWS; MODELS;
D O I
10.1016/j.compfluid.2018.01.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work a stabilised and reduced Galerkin projection of the incompressible unsteady Navier-Stokes equations for moderate Reynolds number is presented. The full-order model, on which the Galerkin projection is applied, is based on a finite volumes approximation. The reduced basis spaces are constructed with a POD approach. Two different pressure stabilisation strategies are proposed and compared: the former one is based on the supremizer enrichment of the velocity space, and the latter one is based on a pressure Poisson equation approach. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 60 条
[1]   On the stability and extension of reduced-order Galerkin models in incompressible flows [J].
Akhtar, Imran ;
Nayfeh, Ali H. ;
Ribbens, Calvin J. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (03) :213-237
[2]  
[Anonymous], 2017, MS A SERIES
[3]  
Baiges J., 2014, COMPUT APPL SCI, V33, P189, DOI DOI 10.1007/978-3-319-06136-8_9
[4]   Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations [J].
Ballarin, Francesco ;
Manzoni, Andrea ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (05) :1136-1161
[5]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[6]  
Barth T., 2004, Finite Volume Methods: Foundation and Analysis, DOI DOI 10.1002/0470091355.ECM010
[7]   Enablers for robust POD models [J].
Bergmann, M. ;
Bruneau, C. -H. ;
Lollo, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) :516-538
[8]  
Boffi D, 2013, MIXED FINITE ELEMENT, P1, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
[9]   A DISCOURSE ON THE STABILITY CONDITIONS FOR MIXED FINITE-ELEMENT FORMULATIONS [J].
BREZZI, F ;
BATHE, KJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :27-57
[10]   A numerical investigation of velocity-pressure reduced order models for incompressible flows [J].
Caiazzo, Alfonso ;
Iliescu, Traian ;
John, Volker ;
Schyschlowa, Swetlana .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :598-616