STAR COLORING AND ACYCLIC COLORING OF LOCALLY PLANAR GRAPHS

被引:10
作者
Kawarabayashi, Ken-ichi [1 ]
Mohar, Bojan [2 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
acyclic coloring; star coloring; genus; edge-width; locally planar graph;
D O I
10.1137/060674211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that every graph embedded in a fixed surface with sufficiently large edge-width is acyclically 7-colorable and that its star chromatic number is at most 2s(0)* + 3, where s(0)* <= 20 is the maximum star chromatic number for the class of all planar graphs.
引用
收藏
页码:56 / 71
页数:16
相关论文
共 11 条
[1]  
Albertson MO, 2004, ELECTRON J COMB, V11
[2]   On acyclic colorings of graphs on surfaces [J].
Alon, N ;
Mohar, B ;
Sanders, DP .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :273-283
[3]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[4]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408
[5]  
Jensen T., 1995, Graph Coloring Problems, P115
[6]  
KAWARABAYASHI K, PLANE HIGHER SURFACE
[7]   Acyclic colorings of locally planar graphs [J].
Mohar, B .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) :491-503
[8]  
Mohar B., 2001, JH STUD MATH SCI, DOI 10.56021/9780801866890
[9]   GRAPH MINORS .7. DISJOINT PATHS ON A SURFACE [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (02) :212-254
[10]   5-COLORING MAPS ON SURFACES [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (01) :89-105