Vector-valued Sobolev spaces based on Banach function spaces

被引:2
作者
Evseev, Nikita [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin 150006, Peoples R China
[2] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Sobolev spaces; Banach function space; Vector-valued functions; Reshetnyak-Sobolev space; Newtonian space;
D O I
10.1016/j.na.2021.112479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that there are several approaches to define a Sobolev class for Banach valued functions. We compare the usual definition via weak derivatives with the Reshetnyak-Sobolev space and with the Newtonian space; in particular, we provide sufficient conditions when all three agree. Also, we revise the difference quotient criterion and the property of Lipschitz mapping to preserve Sobolev space when it is acting as a superposition operator. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 22 条
[1]   Mapping theorems for Sobolev spaces of vector-valued functions [J].
Arendt, Wolfgang ;
Kreuter, Marcel .
STUDIA MATHEMATICA, 2018, 240 (03) :275-299
[2]  
Benyamini Y, 2000, Geometric Nonlinear Functional Analysis, V48
[3]  
Bogachev V.I., 2010, DIFFERENTIABLE MEASU, V164, pXV
[4]  
Brezis H, 2011, UNIVERSITEXT, P1
[5]  
Caama I, 2021, REV R ACAD CIENCIA A REV R ACAD CIENCIA A, V115, P1
[6]  
Creutz P., ARXIV210615449 ARXIV210615449, V2021
[7]   Sobolev space of functions valued in a monotone Banach family [J].
Evseev, Nikita ;
Menovschikov, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (01)
[8]  
Farkas W., 1995, STUD CERCET MAT, V47, P379
[9]  
Hajlasz P, 2000, SOBOLEV MET POINCARE, V688, P101
[10]  
Hajlasz P, 2008, MICH MATH J, V56, P687